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Abstrak 
Kalibrasi menggunakan garis orthogonal adalah salah satu pendekatan dasar kalibrasi kamera, 

tetapi ini membutuhkan garis orthogonal terdeteksi secara akurat, yang menyebabkan peningkatan galat. 
Makalah ini mengusulkan teknik baru kalibrasi-sendiri kamera menggunakan kisi-kisi datar dan garis 
orthogonal virtual. Hubungan analitis ketat antara koordinat titik fitur kisi-kisi datar, koordinat titik citra yang 
sesuai, parameter intrinsik, pose relatif diinduksi sesuai dengan matriks homograpi dari proyeksi pusat. 
Biarkan kemiringan non-paralel dan garis virtual non-ortogonal pada bidang kisi, dan kemiringan garis 
orthonormal dapat dihitung. Dalam setidaknya tiga citra yang diambil , titik hilang dapat diselesaikan dalam 
dua kelompok arah orthogonal dengan menggunakan matriks homograpi, sehingga parameter intrinsik 
kamera yang linear dapt diketahui. Metode ini memiliki prinsip sederhana dan pembuatan pola yang baik, 
dan tidak melibatkan pencocokan citra, selain tidak memiliki persyaratan mengenai gerakan kamera. 
Eksperimen secara simulasi dan data real menunjukkan bahwa algoritma ini adalah layak, dan 
memberikan akurasi yang lebih tinggi dan kokoh.  

 
Kata kunci: kamera kalibrasi-sendiri, parameter intrinsik, titik lenyap, garis virtual 

 
 

Abstract 
 The calibration using orthogonal line is one of the basic approaches of camera calibration, but it 

requires the orthogonal line be accurately detected, which makes results of error increases. This paper 
propose a novel camera self-calibration technique using plane lattices and virtual orthogonal line. The 
rigorous analytical relations among the feature point coordinates of the plane lattice, the corresponding 
image point coordinate, intrinsic parameters, relative pose are induced according to homography matrix of 
the central projection. Let a slope of non-parallel and non-orthogonal virtual line in the lattice plane, and 
the slope of its orthonormal line can be calculated. In at least three photographs taken, vanishing points 
can be solved in two groups of orthogonal directions by using the homography matrix, so the camera 
intrinsic parameters are linearly figured out. This method has both simple principle and convenient pattern 
manufacture, and does not involve image matching, besides having no requirement concerning camera 
motion. Simulation experiments and real data show that this algorithm is feasible, and provides a higher 
accuracy and robustness. 

  
Keywords: camera self-calibration, intrinsic parameter, vanishing point, virtual line 
  
 
1.  Introduction 

In computer vision, it has an important significance to the investigation of camera 
calibration, which is the premise and foundation for obtaining three-dimensional (3D) 
information, and an important part of the binocular visual field. Accurate Calibration of the 
camera intrinsic parameters can not only directly improve measurement precision but 
establishes nice base for further realizing stereo image matching and 3D reconstruction. 
Meanwhile, real-time of calibration can meet the needs of industry machine vision such as 
spatial query, navigation etc. 

It is necessary for a traditional calibration method to design a geometric object 
(calibration pattern) with high precision, and then match accurate data of the calibration pattern 
and its imaging to solve the camera intrinsic parameters. In 1992, Hartley [1] and Faugeras [2] 
first proposed the idea of camera self-calibration. So called camera self-calibration, it refers to 
calibrating the camera intrinsic parameters only by the image sequences acquired from camera 
motion, without understanding geometric data  of an 3D-object in scene. Camera self-calibration 
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is a major focal point of research in the field of computer vision [3-11]. However, the calibration 
methods which not use geometric data in scene are nonlinear, complicated and poor robustness. 
Zhang [12] presented a simple and flexible self-calibration method, which utilize a pinpoint 
lattice template instead of a traditional calibration object. According to the mutual movement 
between the template and a camera, photographs of the template are taken from more than 
three different orientations, so the camera intrinsic parameters can be linearly solved by 
computing the homography matrix between the template and its image. On the basis of Zhang’s 
method [12], Meng et al. [13] put forward a kind of self-calibration method which used a circle 
and several lines passing through the center of the circle as a planar pattern to determine the 
camera intrinsic parameters according to the image of circular points. The self-calibration 
method based on circular points is first put forward. From then on, a number of calibration 
methods are proposed on the basis of Zhang [12] and Meng et al.[13]. Wu FC et al. [14] 
proposed a linear method to determine the camera intrinsic parameters by rectangle. With the 
deficiency of accurate location for lattice pattern in Zhang’s method [12], Li XJ et al. [15] 
proposed a camera self-calibration method based on planar similar figure. Wang GH et al. [16] 
proposed a self-calibration method based on Kruppa equation of checkerboard. In addition, in 
recent years, some self-calibration methods based on circular points or vanishing point have 
emerged [17-20]. Meanwhile, many calibration methods of panoramic camera have appeared 
by using checkerboard pattern [21-22]. 

Considering that line belongs to one of the basic geometric elements, which is common 
and easy to detect, so a camera can be calibrated by using virtual orthogonal lines after 
homography matrix. Taking into account the straight line is one of the basic geometric, common 
and easy to detect. So in this work, we use virtual orthogonal lines to calibrate after obtain the 
homography. In contrast with other calibration methods, this approach only needs to establish 
the homography matrix between world coordinate system (WCS) and image coordinate system. 
Based on the estimation of the homography matrix, vanishing points can be gotten in two 
mutually perpendicular directions, so the camera intrinsic parameters can be solved from three 
images. 
 
 
2. Camera Model 

In this study, we use the pinhole camera model which is the simplified model of 
geometry relation in optical imaging system (see Figure 1). 

 
 

 
 

Figure 1.  Pinhole camera model 
 
 
On the basis of imaging principles of the coordinates of object points in three-

dimensional (3D) space and their corresponding points in image plane, a 2D point m  and a 3D 

point M  are denoted as ( , )Tx y and ( , , )TX Y Z , respectively, and their homogeneous point 

coordinates are denoted as ( , , )Tm x y t and ( , , , )TM X Y Z t , respectively, where t is the 

homogeneous term, and usually 1t  . When  , it corresponds to the element on a plane at 

infinity. The Euclid space which is supplemented with the infinite far element is called an 
extended Euclid space [8]. 

principal axis
image plane

camera
center
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Under pinhole camera model, a space point ( , , ,1)TM X Y Z is projected to its image 

point ( , ,1)Tm x y . Based on the principle of perspective projection transformation, their 

relationship is  

             m PM                                                                                                                                         (1) 

where   is an arbitrary scale factor, P  is called the projection matrix which can be further 

broken down into  P K R t  with the camera extrinsic parameters  ,R t . Here, R  is a 3 3 

rotation matrix and t  is a 3 1 translation vector, which determine the position of WCS with 
respect to camera coordinate system (CCS), and K  is called the camera intrinsic matrix, which 

is given by 
0

00

0 0 1

u

v

f s u

K f v

 
   
  

, with the coordinates 0 0( , )u v of the principal point, the scale factors 

uf , vf  
in image u , v  axes, and the parameter s  describing the skewness of the two image 

axes. 
 
 
3. Estimating the Homography 

Without loss of generality, we assume a lattice plane lies on plane XOY
 
( 0Z  ) of 

WCS. Any point ( , ,0,1)X Y  on the lattice plane is transformed from the WCS into the CCS. 

Then, from (1), it is projected by:  

              1 2 3 1 20
1 1

1

X
X X

Y
m K r r r t K r r t Y H Y

 
    
          
        

 

                                                    (2) 

where H is the homography matrix between the lattice plane and its image, ir  is the thi column 

of the rotation matrix R . 
 

Let H  be
11 12 13

21 22 23

31 32 33

H H H

H H H

H H H

 
 
 
  

.A pair of corresponding points are    , ,1 , ,1M X Y m x y
    , 

and denoted as  11 12 13 21 22 23 31 32 33

T
h H H H H H H H H H . Hence, formally, we have 

  0
0

0

T T T

H T T T

M xM
M M h

M yM

    
 

                                                                                (3) 

where   4, , ,M X Y x y R    is the four-dimensional(4D) vector of nonhomogeneous coordinates 

including a space point and its corresponding image point, called the measuring spacious point.  

In fact, the third component of 3D vector M HM
 is a linear combination of the first two 

components, so  HM M  is the first two components of M HM
. The homography matrix H can 

be regarded as the intersection set of two quadric surfaces in 4D space, so it is given by: 

                4 0H HS M R M M                                                                                                  (4)   
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Suppose     1 1 , 1,2, ,j j j j j jM X Y m x y j n
 

      is a set of measurement 

corresponding points from the homography matrix, so a set of 

   , 1, 2 ,
T

j j j j jM X Y x y j n     can be gotten according to more pairs of measurement 

points. Using a measurement matrix from the set, the homography matrix H can be obtained by 
solving the following minimization problem:  

            


 

2

,
1

min

0, 1, 2,

j

n

j jH M
j

H j

M M

subject to M M j n




  

   







                                                                             (5) 

 
4. Solving Camera Intrinsic Parameters 

Proposition 1: Assume there is a pair of orthogonal lines on the lattice plane, their 
points at infinity are denoted as 1 2,V V  , and their image point are denoted as 1 2,v v , so have 

1 2 0v wv  , where 1w K K  . 

Proof: According camera imaging principle, it can be represented as 

              1 1 1 2 2 2,v K R T V v K R T V                                                                                     (6)  

Rearranging the above equation, we have 

              1 1
1 1 1 2 2 2K v R T V K v R T V  

  ，                                                                        (7) 

Two lines through the infinity points 1 2,V V   are mutually, so the equation is given by   

                   1 2 1 1 2 2 1 2 1 2 1 2 1 2 0
T TT T T T Tv K K v V R T R T V V R T R T V V V      

               (8)     

Let 1K K   , therefore, the above equation may be written as  

             1 2 0v v                                                                                                                                     (9)      

Image coordinates of arbitrary point can be gotten on a pattern by homography matrix. 
The point at infinity corresponding to arbitrary line on a plane lies on the plane. If known any 
point coordinates at infinity, its image coordinates can be obtain, namely the vanishing point 
coordinates. 

Proposition 2: If known arbitrary two either non-parallel or non-orthogonal virtual linear 
slopes, the five camera intrinsic parameters can be determined with at least three images. 

Proof: If let a slope of virtual line on the planar pattern be k , the homogeneous 

coordinates of one point at infinity can be expressed as  1, ,0k in the line direction, and the 

homogeneous coordinates of another point at infinity can be expressed  1, -1 ,0k in its 

orthogonal direction. When given slops of arbitrary two neither parallel nor orthogonal lines, the 
two lines and the points at infinity of their orthogonal lines can be gotten. The vanishing points 
corresponding to the two lines can be obtained by the perspective projection transformation. 
That is 

           
1

1 0

u

v H k
   
      
      

                                                                                                                (10) 
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2n constraint equations as (9) can be established with n images 

 
0T

i jv v 
 

where
 iv  , jv  are the vanishing points of two virtual lines  in two orthogonal directions. 

Let 

1 2 3

2 4 5
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  
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  
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, we can obtain  
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                            (11) 

Let  1 2 3 4 5 6

T
f       ,  
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, 

 
Equation (11) becomes 0Af  . A linear solution of f  is gotten by using the least 

square method to linearly solve, and  can be obtained. The five camera parameters are 
determined by Cholesky decomposition of . 

We use the established propositions to derive the following algorithm. 
Step 1: Make a lattice plane as a template, and take at least three pictures at different 

azimuths. 
Step 2: Use Harris corner detection to get the coordinates of each point on the lattice pattern, 

and estimate the homography matrix H  between the template and its image. 
Step 3: Suppose the slopes 1 2,k k  of two neither parallel nor orthogonal virtual lines on lattice 

plane, and then calculate coordinates of the vanishing point in two orthogonal 
directions according to (10). 

Step 4: Establish the constraint equation according to (9) to obtain  through solving (11). 
Step 5: Determine the five camera intrinsic parameters by Cholesky decomposition of . 
 
 
5. Experiments 
5.1. Simulation results 

In simulation experiments, the planar chessboard as a lattice template, the camera 
intrinsic parameters were set at 2000uf  , 2000vf  , 0.2s  , 0 800u  , 0 650v  . The image 

resolution is 1480×1240. The checker pattern contains 9×7=63 corner points, and its size of the 
pattern is 29.7cm×21cm. The extrinsic parameters are as follows: 
 

  1 1

0.9393 0.3052 0.1564 7.4965

0.3285 0.9318 0.1545 3.6398

0.0986 0.1965 0.9755 18.7231

R T

 
    
  

,  2 2

0.9393 0.3052 0.1564 0.8981

0.1626 0.7978 0.5805 3.6509

0.3020 0.5198 0.7991 14.6923

R T

  
     
  

,

 3 3

0.7071 0 0.7071 3.5355

0.2185 0.9511 0.2185 5.7457

0.6725 0.3090 0.6725 24.1555

R T

 
    
   . 
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In addition, suppose slopes of two either non-parallel or non-orthogonal virtual lines in 
lattices plane are 1 0.25k    and 2 0.125k  , respectively. The chessboard and its images are as 

follows (see Figure 2). 
 

                                                 

(a)                                               (b)   

         

(c)                                              (d) 
 

Figure 2.   (a) the planar chessboard in space. (b), (c), (d) three images under different 
orientations 

 
 
Firstly, estimating the homography matrix and solving the vanishing points of the virtual 

lines according (10), so establish the constraint equations from (9) to solve linearly   
 

-10

1975.349173 -0.197527 -1580150.905232

10 -0.197527 1975.349187 -1283818.971818

-1580150.905232 -1283818.971818 1


 
    
    

 
Finally, obtain the five camera intrinsic parameters K  can be obtained through Cholesky 
decomposition of   
 

2000.000008 0.199992 799.999979

0 2000.000011 650.00011

0 0 1

K

 
   
    

 
The experimental results show that the algorithm provided in this paper is real and 

feasible. In order to further test the robustness of the algorithm, we add Gaussian noise with 0 
mean and   standard deviation to the projected image points, and vary the noise level from 0.1 
pixels to 2.0 pixels. For each noise level, we perform 100 independent trials and calculate their 
mean values, and the results shown are the average. As we can see from Fig 3, errors increase 
linearly with the noise level. Furthermore, we compare with Zhang’s calibration approach [12], 
where the algorithm provided in this paper is expressed as v-point, Zhang’s calibration approach 
is expressed as zhang (see Figure 3).  
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3.2. Real data 
The camera to be calibrated is a CCD camera. The image resolution is 320×240. The 

planar pattern contains 9×7=63 corner points. It was printed with a high-quality printer. Three 
images of the pattern under different orientations were taken, as shown in Figure 4. 

We applied our and Zhang’s calibration algorithm to the three images. The results are 
shown in Table 1 (the skew factor 0s  in Zhang’s method). 

 

 
(a)                                                          (b) 

   
(c)                                              (d)                                                 (e) 

Figure 3.  The experimental results of proposed method’s compare with Zhang’s method. (a), 
(b), (c), (d) the error comparison of the camera intrinsic parameters 0 0, , ,u vf f u v of this paper’s 

method and Zhang’s method. (e) Since let the skew factor 0s  in Zhang’s method, the error of 
the camera intrinsic parameter s is shown by this paper’s method. 

 

     
(a)                                       (b)                                        (c) 

Figure 4.  Three checkerboard images (a), (b), (c) were taken under different orientations 

 

Table 1.  Calibrating camera intrinsic parameters with two different methods 

All within the 
parameters uf  vf  0u  0v  s  

Zhang’s 645.283713 609.838013 208.023821 51.635261 0 
This paper’s 656.017344 618.559911 197.963338 51.759562 0.659119 
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6.  Conclusion 
In this paper, we presented a novel approach of camera calibration. First, we estimated 

the homography between the planar pattern and its image. Then, supposed the slopes of two 
either non-parallel or non-orthogonal virtual lines in lattice plane, used the homography matrix to 
compute the vanishing points in the directions of two groups of orthogonal lines, and solved the 
camera intrinsic parameters by vanishing points. the results of simulation and real data showed 
that this algorithm was feasible and available, and had a certain precision and robustness.  
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