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 Many organization, programmers, and researchers need to debug, test and 

make maintenance for a segment of their source code to improve their system. 

Program slicing is one of the best techniques to do so. There are many slicing 

techniques available to solve such problems such as static slicing, dynamic 

slicing, and amorphous slicing. In our paper, we decided to develop a tool that 

supports many slicing techniques. Our proposed tool provides new flexible 

ways to process simple segments of Java code, and it generates needed slicing 

according to the user needs, our tool will provide the user with direct and 

indirect dependencies for each variable in the code segments. This tool can 

work under various operating systems and does not need particular 

environments. Thus, our tool is helpful in many aspects such as debugging, 

testing, education, and many other elements. 
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1. INTRODUCTION  

Slicing methods focus on extracting code segments from the original program code. These extracted 

segments depend on certain variables, methods, or behavior [1]. Program slicing methods are used as a way to 

abstract variable related code form the original program without changing the behavior or the syntax of  

the original program, in 1979, Weiser [2, 3] was one of the firsts who introduced program slicing. In static 

slicing, all the possible sliced variable values and the execution of the program are taken into account [1]. 

Certain variables in the original code are the main interest for some users, and these variables can be called 

slices. Static slicing generates a sub-program according to the needed slice variable, this subprogram contains 

all the code related to the slice variable, and any unrelated code is ignored [2, 3].   

The first step in static slicing, is to decide what is our slicing criteria, I mean which variable to be 

sliced and in which line number, let the sliced variable called (V), and located in the line number (L), so are 

slicing criteria is S (V, L) [2, 3]. Static slicing can generate executable slice which can be compiled and run 

alone without the original code, and also static slicing can generate none executable slice which cannot be 

compiled or run, but helpful to determine the effect of a slice [4, 5]. Static slicing introduced may different 

slicing types, such as conditioned, forward, backward, amorphous, decomposition, clause and quasi slicing. 

These types are the most frequently used types [6-11]. 

Program slicing is done by finding the relations within program statements, then analyzing these 

relations dependency. When program slicing was introduced early, Weiser [2] produced slices by analyzing 

the flow graph technique. He used graphs and wrote equations to demonstrate the slicing techniques. After 

Weiser, Ottenstein and Ottenstein [12, 13], also used graphs to determine data dependencies as slicing 
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technique.  Due to the success of graphs dependences analysis, more new techniques in program slicing were 

introduced, such as condition slicing using data and control flow diagrams and dynamic slicing [14]. Other 

researchers introduced incremental slicing, they used data dependences computations to generate a slice. 

Incremental slicing is a static slicing "that computes a slice in several steps, by incorporating additional types 

of data dependencies at each step” [15]. 

Data dependence analysis is used by many researchers for object-oriented programs slicing, precisely 

Java [10, 16]. Researchers used static control dependence analysis and dynamic data dependence analysis as a 

proposed method, where they used the dependency graph structure to generate slices from the source code [11]. 

Later, several researchers [17-19] have designed a slicing approach for object-oriented programs written in 

Java. Their approach can identify data members from different objects. Moreover, they created a model that 

can generate class slicing, statement slicing and object slicing for java programs. Slicing semantic and notations 

can be considered as another way to look at static slicing, and researchers used slicing semantic and  

notation [15] to extract identifiers and categories different notions of a program slice available in the literature 

as well as several new notions. 

For Java programs, many proposed tools can do static slicing, For example: watson libraries for 

analysis (WALA) [20] contains a slicer, based on context-sensitive tabulation of reachability in the system 

dependence graph. A set of WALA tools were implemented in JavaScript for more expanding. Indus [21] is an 

effort to provide a collection of program analyses and transformations implemented in Java to customize and 

adapt Java programs. It is intended to serve as an umbrella for static analyses such as points-to analysis, escape 

analysis, and dependence analyses, transformations such as program slicing and program specialization via 

partial evaluation, and any software module that delivers the analyses/transformations into a particular 

application or platform. Kaveri [21, 22] is an Eclipse plug-in front-end for the Indus Java slicer. It utilizes  

the Indus program slicer to calculate slices of Java programs and then displays the results visually in the editor. 

The purpose of this project is to create a useful tool for simplifying program understanding, program analysis, 

program debugging and testing. Recently static slicing has been used in object-oriented regression testing [23]. 

Moreover, new static slicing techniques were introduced in web application slicing [24], machine code [25], 

software robustness measurement [26, 27], and Java programs quality [28-30]. 

 

 

2. JAVA FORWARD SLICING TOOL (JAVA FST) 

The forward slicing is a technique that is focus on the effect of a variable in a particular line number 

on the further code (forward) code of a program [31]. In this research, the proposed tool (JavaFST) was built 

using Java code to apply a forward slicing technique on any Java program. In this tool, the concerned 

programmer (user) can write any simple, i.e., without classes and functions, Java program as an input and then 

have the output as a forward sliced program depending on the slicing criteria that the programmer determines. 

The main contribution in the proposed tool is that it enables the programmer to input any number of lines in 

the program with any number of variables, by using a linked list structure instead of then using array structure 

in previous works. 

 The JavaFST mechanism, in brief, will be as follows: At first, the programmer insert the java program 

code (the input of JavaFST), then JavaFST will extract a list of all variables in the program. Secondly:  

the programmer will be asked to choose the slicing criteria; the variable to be slicing and the line number of 

that variable. Finally: JavaFST will display all the statements starting from the selected line in the program 

which has a direct or indirect dependency on the variable chosen as a forward sliced program. The JavaFST 

algorithm will as follow, and the diagrams in Figure 1 and Figure 2 explains the JavaFST mechanisms.  

Figure 1 shows how the variables are determined and prepared to be sliced. In Figure 2 the slicing process of 

each variable is done. The following steps explain the mechanisem: 

Input: A simple Java program starting after “main” method. 

Output:  

a. A list with all variables in the program and the weight for each variable, where variable weight means  

the number of direct and indirect dependencies on it. 

b. A sliced statements which are a segment from the main program (presented as a sliced list) depending on a 

specific variable determined by the user 

• Step 1: Declare list (prog) to store program statements and the line number of the statement. 

• Step 2: Declare another list (var) to store all the variables in the program, each entry in this list contains 

the variable name, the weight of the variable and a list (var_lines) to store all number of lines where 

there is the dependency on this variable.   

• Step 3: Input a simple java program with any number of lines and any number of variables. 

• Step 4: Add each statement to the list (prog), and each variable (v) to the list (var).  
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• Step 5: while (not the end of the list (prog))  

• Step 6: for each variable (v) in list (var) 

• Step 7:  if (v) is found in the right side of an assignment statement ‘=’ OR if the variable in the right 

side of the assignment affected by the variable (v) ➔ add 1 to variable (v) weight  and store the line 

number of this statement in the (var_lines) list for this variable 

• Step 8:  else  skip to the next statement 

• Step 9:  end while 

• Step 10:  Determine the variable you want to slice the program on it,  

if found ➔ go to step 11, else go to step 13. 

• Step 11: Determine the line number you want to start slicing from it,   

if found ➔ go to step 12, else go to  step 13. 

• Step 12: Start slicing from the line number you determine depending on the chosen variable, and hence 

all the statements which their lines number were in the list (var_lines) will be stored into  

the sliced list (output), then go to step 14. 

• Step 13:  There is an error in the requested variable OR the line number; an error message will be 

displayed to notify that error. 

• Step 14: end 

 

 

 
 

Figure 1. JavaFST variable determination mechanism 
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Figure 2. JavaFST slicing mechanism 

 

 

3. TEST CASE AND EVALUATION 

In the example below, a simple Java application code will be entered, and it has numbers of variables 

with different data type as shown in Figure 2. When the program end is reached, the code will display all  

the variables declared and used in the program. Then it will ask you to choose the variable that you want to 

slice on it as seen in Figure 3. Finally, Figure 4 shows the sliced code which depends on the selected variable 

in Figure 3. 

 

 

Enter your simple program. You should start after main method... 

1        int x=10, y=5; 

2        int z=6; 

3        int sum; 

4        double avg; 

5        sum = x+y+z; 

6        avg = sum/3; 

7        z = x*2; 

8        int a = y+8; 

9       double c; 

10     c = avg + a; 

# … used to indicate the program end 

Number of lines: 10 

 

Figure 2. Java code to be sliced 
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Variables in the program are:  

Variable Name  Weight 

x   4 

y   4 

z   3  

sum   2 

avg   1  

a   1 

c                0 

 

Figure 3. The list of variables 

 

 

Enter the variable name which you want to slice upon it: 

x 

Enter the line number where you want to start slicing from it: 

6 

 

The sliced code: 

avg = sum/3; 

z = x*2; 

c = avg + a; 

 

Figure 4. The sliced code 

 

 

Java FST has succeeded to introduce a new slicing approach that supports forward slicing technique 

using LinkedList data structure. As a result, it gives the programmer the flexibility to slice as many as variables 

as required. JavaFST also does not need to be plugged in or work on a particular platform, such as in 

Indus/Kaveri or WALA. Moreover, JavaFST read a Java code stored in a text file or a text file that does not 

need to be compiled nor run before slicing. Therefore, more flexibility and time saving that can be useful for a 

testing piece of code. However, the JavaFST is still unmuture enough the slice an advanced Java programs 

code, i.e., contains classes and functions. Therefore, it can be used for educational purposes or simple  

analysis applications. 

 

 

4. CONCLUSION 

JavaFST is a forward slicing tool, which reads a java code from a text file, extracts the variables, and 

run a forward slicing on the selected slicing criteria, and it produces a complete slice for the chosen variable 

on a specific line. The main advantage of JavaFST that can slice an un-compiled Java program or a piece of 

code. Moreover, it was built to use a LinkedList to store the variable, which gives a dynamic space that allows 

the programmer to save as many as variable required, however, still in early stage and not able slice  

object-oriented programs and complex Java code. 
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