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ABSTRACT

This article proposes a closer-to-metal approach of RTL inspection in microprocessor

design for use in education, engineering, and research. Signals of interest are tapped

throughout the microprocessor hierarchical design and are then output to the top-level

entity and finally displayed to a VGA monitor. Input clock signal can be fed as slow as

one wish to trace or debug the microprocessor being designed. An FPGA development

board, along with its accompanying software package, is used as the design and

test platform. The use of VHDL commands ’type’ and ’record’ in the hierarchy

provides key ingredients in the overall design, since this allows simple, clean, and

tractable code. The method is tested on MIPS single-cycle microprocessor blueprint.

The result shows that the technique produces more consistent display of the true

contents of registers, ALU input/output signals, and other wires – compared to the

standard, widely-used simulation method. This approach is expected to increase

confidence in students and designers since the reported signals’ values are the true

values. Its use is not limited to the development of microprocessors; every FPGA-

based digital design can benefit from it.
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1. INTRODUCTION

Digital device development depends greatly on precise understanding how data propagate between

basic digital logic units, also called register transfer level. In design phase, designers often use simulation

procedures to check whether their designs meet the logic requirements. An example of this is also encountered

in senior level electrical/computer engineering bachelor-degree courses such as Programmable Logic

Design or Computer Architecture [1–4]. In such courses, students are asked to design a micro-architecture of

a microprocessor based on a given architecture (that is, the assembly language requirement). Students then

write HDL code representing the micro-architecture and test the design against a set of instructions. Testing is

generally done in simulation and, after a number of testing-coding iterations, hardware test is performed.

Software simulation is indispensable for its quick setting, fast compilation, and – provided the

designer is experienced – accuracy. However, mismatches between simulation and synthesized hardware are not

entirely unheard of, even for simple design. Mismatches also occur between pre-synthesis and post-synthesis

simulations. To make matter worse, in post-synthesis (netlist) simulation one generally can only monitor the

top-level ports; signals deeper in hierarchy are inaccessible. To address this problem, we propose a closer-to-

metal approach for the register transfer level inspection. Effectively, this is an on-chip debugging technique

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA



1230 ❒ ISSN: 1693-6930

where signals of interest are brought up to the top level for output reading.

The term on-chip debug generally refers to a technique in microprocessor (or other digital device)

design where a designer can inject a fault in the device under development to test its fault tolerant behavior [5–

8]. For microprocessors, this is usually done using JTAG protocol based on NEXUS Consortium standard.

In [9], on-chip debug is used in high level synthesis for FPGAs.

On-chip debug has been a concern from the beginning of computer era. FPGA has also taken part in

this field. For example, work by Jamal et.al [10, 11] proposes better functional changes during on-chip debug,

utilizing FPGA overlay architecture. Contemporary works in this field, particularly post-silicon debug, can be

found in [12–15]. Indeed, post-silicon debug readiness needs to be prepared early in the design [16–18]. A

number of authors extend the idea to other areas such as machine learning [19, 20].

In this article we describe on-chip debug more in its literal meaning. That is, the process of debugging

a microprocessor in which the debug capability is embedded in the hardware design. Our contribution lies in

the following aspects. First, we propose a simple hardware-oriented debugging method for use in any digital

design. We hope this introductory notion will trigger students’ creative faculty to solve some challenging

problems that otherwise difficult to tackle. Second, we describe – in a tutorial way – the construction of a

simple on-chip debugging feature in the design of a microprocessor using ‘type’ and ‘record’ in vhdl. We

believe this will help students and designers easily duplicate our work.

2. RESEARCH METHOD

This research starts with a list of design requirements for an on-chip debugging feature in

a microprocessor:

(a) non-intrusiveness: the debugging feature should be as discreet as possible so as not to obstruct the main

design

(b) meaningful message: the interface to human reader should be immediately readable

(c) easy to modify: when the designer wants to tap other signals in the microprocessor design, it should be

straightforward to do so

The main idea of this chip debugging feature is shown in Figure 1.
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Figure 1. On-chip debugging principles in this paper.

The next step is building a model microprocessor from scratch using VHDL in an FPGA chip (an

Altera DE2-115 development board was used). Here we use a scaled-down version of the MIPS microprocessor

architecture [21, 22] as our proof of concept. MIPS architecture has the advantages of, among others, being

simple and consistent for students to follow. MIPS is of RISC-architecture and originated as a pedagogical

model at Stanford University. We developed the chip-debugging feature based on a MIPS implementation

described by Harris and Harris [23]. In this stage a VGA display module were also built, consisting of a vga

sync module, two character memory modules, and a font ROM. The experimental hardware setup is shown

in Figure 2. We extend the single-cycle MIPS instruction set found in the main text of [23] by constructing

a number of new instructions and ‘rewire’ the datapath as needed. We then verify – using the proposed on-

chip debugging technique – that the final result works as expected. In the next section we will discuss the

engineering design in more detail.
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Figure 2. Hardware setup. Altera DE2-115 development board is used to test the proposed technique,

together with a 1024x768 resolution monitor.

3. PROTOTYPE DESIGN

The design requires several aspects to work seamlessly together. These are: processor design with its

signal inspection, information display, and experiment design.

3.1. Processor design and signal inspection

As mentioned before, the approach works by sensing internal microprocessor signals (including mem-

ory access ones) and sending them up through the design hierarchy. Using hierarchical design implies that

many entities and files are used, which poses a new challenge on how to tap signals from different entities in a

straightforward and unobtrusive way. The signal tapping as shown in Figure 1 is implemented using a shared

bus that is available across the hierarchy. Figure 3 shows the organization of modules that make up the entire

microprocessor.
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Figure 3. Module organization and hierarchy. The small red blocks are instantiations of the record entity that

encapsulates the tapped signals’ information. The red ‘cable’ then acts as a debug-bus across the hierarchy.

The arithmetic logic unit (ALU) does the arithmetic computation with the help of a set of registers

(32-bits × 32) that functions as a scratchpad for the ALU. Program counter (PC) acts as a pointer to instruction.

Sign-extend module extends less-than-32-bit-wide numbers (for example in immediate-type instructions) to its

32-bit representation. The shift module functions as bit-wise shifter. All these are in the “datapath” module
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which also hosts a number of multiplexers controlling which way data would flow into. Controlling is done by

the “controller” module outside the datapath, which decode 32-bit instructions from the instructions memory.

Datapath and Controller forms the ”MIPS processor” module. Together with Instruction Memory and Data

Memory modules, they make up the complete microprocessor system.

The signal tapping, shown as red blocks in Figure 3, is a record-type entity instantiated at every mod-

ules of interest. Acting as a “debugging bus”, this record is ready to accept the value of any signal of interest in

every level in the hierarchy. Since the bus is logically encapsulated, it does not obstruct the main design. Mod-

ifying the bus’ content is straightforward and can be done once in the definition, without the need to change

any code in the instantiation part.

-- File name: myfuns.vhd

-- ... Other statements ...

-- 'Regsbundler' below is for collecting

-- contents of registers.

-- There are 32 registers, each 32 bit wide.

type regsbundler is record

R00,R01,R02,R03,R04,R05,R06,R07,

R08,R09,R10,R11,R12,R13,R14,R15,

R16,R17,R18,R19,R20,R21,R22,R23,

R24,R25,R26,R27,R28,R29,R30,R31:

std_logic_vector(31 downto 0);

end record;

-- 'Bundler' below is for collecting

-- signals in datapath.

-- 'Regsbundler' above is also included.

type bundler is record

pc : std_logic_vector(31 downto 0);

instr : std_logic_vector(31 downto 0);

RA1,RA2,WA3:std_logic_vector(4 downto 0);

alua,alub:std_logic_vector(31 downto 0);

aluout:std_logic_vector(31 downto 0);

RD1,RD2,WD3:std_logic_vector(31 downto 0);

regs:regsbundler; -- registers' contents

end record;

-- ...

-- File name: sc_datapath.vhd

-- ... Other library declarations ...

use work.myfuns.all;

Entity sc_datapath is

port( -- Other port definitions

-- ...

Reporter : out bundler

);

end sc_datapath;

Architecture struct of sc_datapath is

-- ... Other statements ...

----- Reporter collects ------------

Reporter.pc <= pc;

Reporter.instr <= instr;

Reporter.RA1 <= instr(25 downto 21);

Reporter.RA2 <= instr(20 downto 16);

Reporter.WA3 <= writereg;

Reporter.RD1 <= srca ;

Reporter.RD2 <= writedata ;

Reporter.WD3 <= result ;

Reporter.alua <= srca;

Reporter.alub <= srcb;

Reporter.aluout <= aluout;

------------------------------------

-- ...

Figure 4. ’Record’ type for the construction of debugging bus. On the left: definition. On the right: example

instantiation and usage in the datapath module.

3.2. Information display

To show the debugging steps, the values of signals of interest are displayed in VGA monitor, one

row per clock. The Altera DE2-115 board is equipped with a VGA port, but users must themselves program

the VGA synchronization and character generation. Here we adopt the method described in [24], and the

arrangement is depicted if Figure 5. In this layout, phase locked loop (PLL) is used step up the clock frequency.

It feeds the VGA sync module, which produces the horizontal and vertical synchronization signals, to be used

by the VGA display. The vga sync module also generates information of current pixel’s x and y position.

This information is used by the character generation and Font-ROM modules to render appropriate character

at a given time. Again, the interested readers are referred to [24] for further technical details regarding the

display arrangement. The microprocessor system, shown in Figure 5, also in Figure 3 as green-outlined box,

transmits the debugging signals off to the report compiler where all tapped signals are lined up and sent off to

the character generation circuit.
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Figure 5. Display arrangement, including reporting module.

3.3. Test design

The next step in this work is to design a test which will confirm the functionality of of the overall setup,

which will serve as a proof of concept for our proposed method. A microprocessor architecture expansion task

is chosen as the test. That is, new instructions are to be introduced to set. This will require a modification in the

micro-architecture of our microprocessor and testing the functionalities of the new instructions. As the base

architecture, we adopt [23], which in turn was inspired by earlier editions of [25]. Specifically, the reader are

referred to Chapter 6 (Architecture) and Chapter 7 (Microarchitecture) of [23].

These added instructions are shift left logical (sll), shift right logical (srl), and shift right arithmetic

(sra). The three instructions are of R-type instruction and have the same invocation form. For instance, the

format for sll is:

sll rd,rt,shamt

where rd is the destination register, rt is the source register. The four-bytes data is stored in rt is shifted left by

shamt amount, and then stored in rd. Similar form holds for srl and sra.

The architecture for these three register-type instructions is shown in Figure 6(a). Following the

convention, the six most significant bits (instr[31:26], the op field) are 0, indicating R-type instructions. The

6 least significant bits (instr[5:0], the funct field) indicate which R-type instruction is operative. (And only

last two bit indicate which of the three shifts will be operative). The shift amount is placed in the shamt field

(instr[10:6]). The source and destination register are in the rt and rd fields, respectively.

Based on the above architecture, a number of modifications are implemented in the microarchitecture.

Figure 6(b) shows part of the new microarchitecture design. The shifter module receives the instr[10:6] as the

amount of shift and receives instr[1:0] as shift mode chooser (which of the three shift commands is operative).

The 32 bit data (to be shifted) comes from the register and is output to a multiplexer, which will choose between

two signals: output from the original ALU or output from the shifter.
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Figure 6. New instructions for the microprocessor: sll, srl, and sra. (a) Bit arrangement within 32-bit wide

instruction, conforming MIPS ISA in [23]. (b) Hardware implementation in the micro-architecture

(only modified part is shown).
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After modifying the microarchitecture, a set of code will be used to confirm the validity. The test

code formulated is a continuation of the test code in [23], page 437. It consists of computations involving all

instruction by which a specific state is targeted (“value of 7 is stored in memory address 84”). A fault in the

implementation of any instruction will render the target state not achieved. It is very unlikely to produce the

expected result under faulty condition.

Figure 7 shows the overall instruction test, written in MIPS assembly language. The blue lines (address

0 to 40 and address 64) are the original test from [23], and the green ones (address 44 to 60) are the new

code. In the end of the test, the computed value (happens to be 126 = 0x7e) is stored in the memory address

84 = 0x54.

# Assembly Description Address Machine

#--------------------------------------------------------------------------

main: addi $2, $0, 5 # initialize $2 = 5 0 20020005

addi $3, $0, 12 # initialize $3 = 12 4 2003000c

addi $7, $3, -9 # initialize $7 = 3 8 2067fff7

or $4, $7, $2 # $4 = (3 OR 5) = 7 c 00e22025

and $5, $3, $4 # $5 = (12 AND 7) = 4 10 00642824

add $5, $5, $4 # $5 = 4 + 7 = 11 14 00a42820

beq $5, $7, end # shouldn’t be taken 18 10a7000a

slt $4, $3, $4 # $4 = 12 < 7 = 0 1c 0064202a

beq $4, $0, around # should be taken 20 10800001

addi $5, $0, 0 # shouldn’t happen 24 20050000

around: slt $4, $7, $2 # $4 = 3 < 5 = 1 28 00e2202a

add $7, $4, $5 # $7 = 1 + 11 = 12 2c 00853820

sub $7, $7, $2 # $7 = 12 - 5 = 7 30 00e23822

sw $7, 68($3) # [80] = 7 34 ac670044

lw $2, 80($0) # $2 = [80] = 7 38 8c020050

j sh_test # should be taken 3c 08000011

addi $2, $0, 1 # shouldn’t happen 40 20020001

sh_test: sll $8, $2, 10 # $8 = 7*2^10= 7168 44 00024280

addi $7, $8, 256 # $7 = 7168+256 = 7424 48 21070100

srl $7, $7, 6 # $7 = 7424/2^6 = 116 4c 00073982

addi $9, $0, 1280 # initialize $9 = 1280 50 20090500

sub $10, $0, $9 # $10 = -1280 54 00095022

sra $11, $10, 7 # $11 = -1280 SRA 7 = -10 58 000a59c3

sub $12, $0, $11 # $12 = 0 - (-10) = 10 5c 000b6022

add $2, $7, $12 # $2 = 116 + 10 = 126 60 00ec1020

end: sw $2, 84($0) # write mem[84] = 126 64 ac020054

Figure 7. Testing the new microarchitecture. Blue lines (address 0 to 40 and address 64) are test code

from [23]. Green lines (address 44 to 60) are inserted to test new instructions implemented in the

microarchitecture.

4. RESULT AND ANALYSIS

Two scenarios are administered to assess the proposed method. First one involves simulation of the

microprocessor system using ModelSim. The second one is to run the microprocessor in the Altera FPGA chip.

In both scenarios, the same microprocessor module is used (green box in Figure 3). In the first scenario –the

ModelSim simulation– a SystemVerilog testbench file is built as wrapper for the microprocessor. The second

scenario synthesizes the microprocessor and programmed the netlist into the FPGA chip.

In both scenarios, the test code in its machine form as shown in Figure 7, rightmost column, is em-

bedded to the chip in the Instruction Memory. The instruction is executed sequentially, with jumps at specific

moments. Debugging in microprocessor design most of the times involves probing values of internal signals

such as program counter, instruction, register address input, register data input, memory address, ALU inputs,

ALU output. Indeed, these are the signals we will display in both scenarios.

Figure 8 shows the result for the first scenario. It can be seen that a number of signal values are

not resolved. Instead of showing values of signals, ‘xxxxxxxx’ are shown. In the second scenario, where

on-chip debugging features are employed in the FPGA-based microprocessor chip, all signal values are de-

lineated correctly. The result is depicted in Figure 9. The difference in the signal display (though the final

result is the same, implying correct model/design) might come from overly tight timing specification, coarse

timing resolution, multiply driven signals, different initial states, or simply a bug in the simulation software.

The on-chip debugger, on the other hand, shows real data from the hardware (though still limited by the display

system’s speed capability).

While it is relatively straightforward (but not necessarily easy) to fix bugs in the simulation side,

hardware reporting is precious and some times the only choice a designer has. The MIPS example shown here

serves as a demonstration of this on-chip debugging technique.
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Figure 8. ModelSim output. Unresolved signals are indicated.

Figure 9. Output of the on-chip debugging technique.

5. CONCLUSION

This paper proposed a hardware-oriented approach of debugging a chip design in FPGA, by way of

tapping signals from any level in the hierarchy up to the top level. These signals of interest were then displayed

using VGA module provided by the board. The tapping was done using a the VHDL ‘record’ type as a bus

with which signals are bundled and transported up the hierarchy.

A microprocessor design challenge was used as the test case. The proposed method correctly dis-

played the internal signals. The approach naturally showed higher fidelity compared to simulation. While

software simulation of hardware design is indispensable and will continue to get better, hardware-level debug-

ger and reporting module is invaluable and some times the only option. This is even more true when the chip

is already in the deployment stage. We hope that this paper will inspire other researchers and students alike to

employ the same technique in their designs.
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