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 One example of the state-of-the-art vertical rule mining technique is called 
equivalence class transformation (Eclat) algorithm. Neither horizontal nor 

vertical data format, both are still suffering from the huge memory 

consumption. In response to the promising results of mining in a higher 

volume of data from a vertical format, and taking consideration of dynamic 
transaction of data in a database, the research proposes a performance 

enhancement of Eclat algorithm that relies on incremental approach called  

an Incremental-Eclat (i-Eclat) algorithm. Motivated from the fast intersection 

in Eclat, this algorithm of performance enhancement adopts via my structured 
query language (MySQL) database management system (DBMS) as its 

platform. It serves as the association rule mining database engine in testing 

benchmark frequent itemset mining (FIMI) datasets from online repository. 

The MySQL DBMS is chosen in order to reduce the preprocessing stages of 
datasets. The experimental results indicate that the proposed algorithm 

outperforms the traditional Eclat with 17% both in chess and T10I4D100K, 

69% in mushroom, 5% and 8% in pumsb_star and retail datasets. Thus, among 

five (5) dense and sparse datasets, the average performance of i-Eclat is 
concluded to be 23% better than Eclat. 
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1. INTRODUCTION  

Data mining (DM) is the research area where the huge dataset in database and data repository are 

being scoured and mined to find novel and useful pattern. Association analysis is one of the four (4) core data 

mining tasks besides cluster analysis, predictive modelling and anomaly detection. The task of association rule 

mining is to discover if there exist the frequent itemset or pattern in database and if any, an interesting 

relationship between these frequent itemsets can reveal a new pattern analysis for the future decision making. 

It is a fundamental part of many data mining applications including market basket analysis, web link analysis, 

genome analysis and molecular fragment mining. In mining frequent itemsets, two (2) main searching 

strategies could be applied i.e. Horizontal format (breadth first search) or vertical format (depth first search). 

The searching strategy in mining might give significant effect to overall mining process. Finding frequent 

itemsets or patterns is a big challenge and has a strong and long-standing tradition in data mining [1] since data 

https://creativecommons.org/licenses/by-sa/4.0/
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is increasing rapidly in volume [2]. The difficulties arise when new data is added, the naïve approach is to rerun 

the whole mining algorithm [3] on the whole datasets. Thus, this process results in huge main and cache 

memory consumption [4]. To the best of our knowledge, there are three (3) basic frequent itemset mining and 

best-known algorithms, Apriori [1, 2] that lies in horizontal format, FP-Growth [3] and Eclat [4] that lies in 

vertical format. In this paper, we focus on vertical format by looking deeper on equivalence class 

transformation (Eclat) algorithm [4] and Eclat-variants algorithm in [5-7] as the research base models. We 

propose an incremental approach that based on vertical Eclat algorithm and named it as incremental Eclat or  

i-Eclat to improve the performance of memory. The response time is measured in time execution per seconds. 

 

 

2. BASIC PRINCIPLES 

2.1.  Association rule 

In the rest of this section, let 𝐵 be the item base where 𝐵 =  {𝑖1, 𝑖2, . . . , 𝑖𝑚}, for 𝑚 >  0 refers to  

the set of literals called a set of m items. Items may be a product, service, action or atom.  

A set 𝑋 =  {𝑖1, . . . , 𝑖𝑘}  ⊆  𝐵 is called an itemset or a k-itemset if it contains 𝑘 items. A transaction over 𝐵  

is a couple of 𝑇𝑖  =  (𝑡𝑖𝑑, 𝐼) where 𝑡𝑖𝑑 is called a transaction identifier and 𝐼is an itemset. A transaction  

𝑇𝑖  =  (𝑡𝑖𝑑, 𝐼) is said to support an itemset 𝑋 ⊆  𝐵 if 𝑋 ⊆  𝐼. A transaction database 𝑇 is a set of transaction 

over 𝐵. A tidset of an itemset 𝑋 in 𝑇 is defined as a set of transaction identifiers in 𝑇 that support 𝑋 where 

𝑡(𝑋) = {𝑡𝑖𝑑 | (𝑡𝑖𝑑, 𝐼)  ∈  𝑇, 𝑋 ⊆  𝐼}. Support of an itemset 𝑋 in 𝑇 is the cardinality of its tidset such that 

support of 𝑋 is the number of transactions containing 𝑋 in 𝑇, where 𝑠𝑢𝑝(𝑋)  = |𝑡(𝑋)|. Illustration of  

support-confidence framework is given as below: 

- The support of rule 𝑋 ⇒ 𝑌 is the fraction of transactions in database, D containing both X and Y.  

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 ⇒ 𝑌) =
𝑋 ∪ 𝑌

|𝐷|
  

 

- The confidence of rule 𝑋 ⇒ 𝑌 is the fraction of transactions in D containing X that also contain Y. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑋 ⇒ 𝑌) =  
𝑠𝑢𝑝𝑝 (𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝 (𝑋)
 

 

A rule is frequent if its support is greater than minimum support (min_supp) threshold. The rules which satisfy 

minimum confidence (min_conf) threshold is called strong rule where 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 and 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 are user 

specified values. An association rule is considered interesting if it satisfies both min_supp and min_conf 

thresholds [8]. 

 

2.1.  Definitions 

Definition 1.  

Given a transaction database T over an item base B and a minimal support threshold, smin.  

The set of all frequent itemsets is denoted by: 

 

F(T, smin) = {X ⊆ B| sup(X) ≥ smin} 

 

Definition 2. (Candidate itemset):  

Given a transaction database T with a minimum support threshold, Smin and algorithm for frequent 

itemset mining of F(T, smin), an itemset X is called candidate itemset if the algorithm evaluates if X is frequent 

or not.  

Definition 3. (Intersection):  

Let A and B be sets. The intersection of set A and B is denoted by A ∩  B is the set containing those 

elements in both A and B such that 

 

𝐴 ∩  𝐵 =  {𝑥 | 𝑥 ∈  𝐴 ʌ 𝑥 ∈  𝐵} 

 
Definition 4. (Difference set):  

Let A and B be sets. The difference of A and B is denoted by A – B, is the set containing those elements 

that are in A but not in B. The difference of A and B is also called the complement of B with respect to A  
such that 

 

A −  B =  {x | x ∈  A ʌ x ∉  B} 
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3. TRADITIONAL ECLAT 

Eclat is the abbreviation of Equivalence Class Transformation. Its main operation is intersection of 

tidsets, thus the size of tidsets is one of the main factors affecting the running time and memory usage of  

Eclat [9, 10]. The bigger tidsets are, the more time and memory are needed [11]. Eclat uses  

prefix-based equivalence relation, θ1 along with bottom up search. It enumerates all frequent itemsets. There 

are two main steps: candidate generation and pruning. In candidate generation, each k-itemset candidate is 

generated from two frequent (k-1)-itemsets and its support is counted, if its support is lower than the threshold, 

then it will be discarded, otherwise it is frequent itemsets and used to generate (k+1)-itemsets. Eclat starts with 

prefix {} and the search tree is actually the initial search tree. To divide the initial search tree, it picks the prefix 

{a}, generate the corresponding equivalence class and does frequent itemset mining in the sub tree of all 

itemsets containing {a}, in this sub tree it divides further into two sub trees by picking the prefix {ab}: the first 

sub tree consists of all itemset containing {ab}, the other consists of all itemsets containing {a} but not {b}, 

and this process is recursive until all itemsets in the initial search tree are visited [12]. 

 

3.1.  Candidate generation and pruning 

In candidate generation, each k-itemset candidate is generated from two frequent  

(k-1)-itemsets and its support is counted [13, 14]. If its support is lower than the threshold, then it will be 

pruned or discarded. Otherwise, it is frequent itemsets and used to generate (k+1)-itemsets. Since Eclat uses 

vertical layout, counting support is trivial. Depth-first searching strategy is done where it starts with frequent 

items in the item base and then 2-itemsets from 1-itemsets, 3-itemsets from 2-itemsets and so on. For example,  

{𝑎𝑏𝑐} = {𝑎𝑏} ∪ {𝑎𝑐}, {𝑎𝑏} and {𝑎𝑐} are parent of {𝑎𝑏𝑐}. To avoid generating duplicate itemsets, (k-1)-itemsets 

are sorted in some orders. To generate all possible k-itemsets from a set of (𝑘 − 1)-itemsets sharing (𝑘 − 2) 

items, union operation is conducted of a (𝑘 − 1)-itemsets with the itemsets that stand behind it in the sorted 

order, and this process takes place for all (𝑘 − 1)-itemsets except the last one.  

 

3.2.  Equivalence class 

An equivalence class 𝐸 = {(𝑖1, 𝑡(𝑖1 ∪ 𝑃)), … , (𝑖𝑘, 𝑡(𝑖𝑘 ∪ 𝑃))|𝑃} , considering the set {𝑖1, … , 𝑖𝑘} as an 

item base, it will have a tree of itemsets over this item base and if the prefix P is appended to all itemsets in 

this new tree, it will have a set of all itemsets sharing the prefix 𝑃 in the search tree over the item base 𝐵.  

In other word, from this equivalence class, a set of all itemsets sharing the prefix 𝑃 could be generated and this 

set forms a sub tree of the initial search tree. We refer traditional Eclat algorithm with  

Eclat-tidset. It starts with prefix {} and the search tree is actually the initial search tree. To divide the initial 

search tree, it picks the prefix {𝑎}, generates the corresponding equivalence class and does frequent itemset 

mining in the sub tree of all itemsets containing {𝑎}, in this sub tree it divides further into two sub trees  

by picking the prefix {𝑎𝑏}: the first sub tree consists of all itemset containing {𝑎𝑏}, the other consists of all 

itemsets containing {𝑎} but not {𝑏}, and this process is recursive until all itemsets in the initial search  

tree are visited. 

 

3.3.  Horizontal vs. vertical database layout 

The works by [15-18] demonstrate how vertical database layout has major advantages over horizontal 

database layout. Firstly, computing supports of itemsets is much simpler and faster since it involves only 

intersections of tids and the number of tids automatically indicates the support. In contrast,  

a complex hash-tree data structures [3] and functions are required for horizontal layout. Secondly,  

an automatic “reduction” of the database before each scan where only those relevant itemsets to the following 

scan of the mining process are accessed from disk. In vertical layout, each item 𝑖𝑘 in the item base 𝐵 is 

represented as 𝑖𝑘: {𝑖𝑘, 𝑡(𝑖𝑘)} and the initial transaction database consists of all items in the item base. For both 

layouts, it is possible to use the bit format to encode tids and also a combination of both layouts can be used. 

Figure 1 illustrates horizontal and vertical layout of data representation. Following the depth-first-search of 

prefix {𝑎} as shown in Figure 2, an equivalence class with itemsets {𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑎𝑒} will be generated, which 

are all 2 − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 containing{𝑎}. In this sub tree, with the prefix {ab}, an equivalence class with  

3 − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 will be {𝑎𝑏𝑐, 𝑎𝑏𝑑, 𝑎𝑏𝑒}. It can be seen that each node in the tree is a prefix of an equivalence 

class with itemsets right below it. Here, Eclat does not fully exploit the downward closure property because of 

its depth-first search.  
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Figure 1. Horizontal and vertical layout 

 

 

 
 

Figure 2. Pseudocode for Eclat algorithm 

 

 

4. ECLAT VARIANTS 

4.1.  dEclat algorithm (Eclat-diffset) 

The dEclat (different set or diffset) represents an itemset by tids that appear in the tidset of its prefix 

but do not appear in its tidsets [5]. In other words, diffset is the difference between two (2) tidsets  

(i.e. tidset of the itemsets and its prefix). Using diffset, the cardinality of sets representing itemsets is reduced 

significantly and this results in faster intersection and less memory usage. An equivalence class with prefix 𝑃 

is considered to contain the itemsets 𝑋 and 𝑌. Let 𝑡(𝑋) denotes the tidset of 𝑋 and d(𝑋)) denotes the diffset of 

𝑋. When using tidset format, the 𝑡(𝑃𝑋) and 𝑡(𝑃𝑌) are available in the equivalence class and to obtain 𝑡(𝑃𝑋𝑌), 

the cardinality of 𝑡(𝑃𝑋) ∩ 𝑡(𝑃𝑌) = 𝑡(𝑃𝑋𝑌) can be checked [6]. 

 

4.2.  Sortdiffset algorithm (Eclat-sortdiffset) 

The sorting of diffset (sortdiffset) is to enhance dEclat during switching condition [7].  

When switching process takes place, there exist tidsets which do not satisfy the switching condition,  

thus these tidsets remain as tidsets instead of diffset format. The situation results in both tidsets and diffsets 

format of itemsets in particular equivalence class and the next intersection process will involve both 

formats.eclat algorithm. 
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4.3.  Postdiffset algorithm (Eclat-postdiffset) 

A study in [19, 20] introduces Postdiffset algorithm that mines in tidsets format for the first level 

while mining in diffset format in the next level onwards. The performance (in execution time) of mining 

itemsets are compared between traditional Eclat (tidset) [4], dEclat [5], sortdiffset [7] and postdiffset, and yet, 

Postdiffset turns to be the third after dEclat and sortdiffset. 

 

 

5. THE INCREMENTAL APPROACH 

5.1.  Incremental based on apriori and FP-growth 

To improve performance and accuracy of itemset mining, recent researches in [21-25] focus towards 

parallel and incremental mining approaches. Incremental mining in a dynamic database is established with 

regards to the itemsets or records of transaction. Incremental in itemsets means an additional new items being 

added or deleted to the existing itemsets in database whereas incremental in records of transaction means 

the additional transactions to the existing database transaction. The algorithm for mining weighted maximal 

frequent itemsets from incremental databases is introduced [26]. By scanning a given incremental database 

only once, the proposed algorithm extracts a smaller number of important itemsets and provide more 

meaningful pattern results reflecting characteristics of given incremental databases and threshold settings. A 

three-way decision update pattern approach (TDUP) is introduced [27]. The approach offers for two  

support-based measures and synchronization mechanism is periodically triggered to recompute the itemsets 

offline and results indicate the proposed approach efficient and reliable. The research in [28] proposes 

incremental parallel apriori-based algorithm on spark (incremental FIM) where it updates frequent itemset 

based on previous frequent itemset instead of recomputiong the whole datasets from scratch. The result shows 

the algorithm improves mining performance significantly. The IFIN algorithm (a prefix tree structure  

IPPC-Tree based on FP-Growth is developed [29]. The algorithm maintains a local and changeable order of 

item in a path nodes from the root to a leaves, which does not waste computational overhead for the previously 

processed part of data when a new itemset is added or the support threshold is changed and the result depicts 

an efficient time and memory consumption in mining. 

 

5.2.  Incremental based on eclat (i-Eclat) 

Our approach is to increment the mining of itemsets from Eclat as our based model. We add with  

two (2) basic definitions of incremental mining such as follows: 

Definition 5. (Incremental Database):  

Given a sequence of transaction, T, each of which is called itemset. For a database D and a sequence 

α, 1the support of α in D is denoted by supportD(α) is the frequency of items in D. Suppose that new data, δ 

is to be added to database D. Then D is said to be original database and δ is the incremental database.  

The updated database is denoted by D + δ.  

Definition 6. (Incremental Records and Itemsets Discovery Problem):  

Given an original database D and a new increment to the D which is δ, find all frequent itemsets in 

database (D + δ) with minimum possible recomputation and I/O overheads. For each k ≥  1, Fk denotes  

the collection of frequent itemsets of length k in the updated database (D + δ). 
A physical design of i-Eclat is diagrammed in Figure 3. From original database, all frequent items are 

passed to the first pruning process, getaway G1. G1 is set with the value of min_support threshold prior to 

generating the list of candidates. To set G1, total transaction records are scanned to be multiplied with  

the percentage of user-specified min_support value. Once the value is obtained, only candidate of frequent 

itemsets that passed the G1 value is processed either through Eclat-tidset, Eclat-diffset, Eclat-sortdiffset or 

Eclat-postdiffset algorithms in Eclat engine. Second pruning process, getaway 2A or G2A where data is written 

to text file in i-Eclat engine. By writing to text file, candidate itemsets are directed to hard disk storage, so that 

the resource of memory storage is automatically reduced to enable the processing and executing of full  

datasets. This is due to maximum memory consumption in handling too many candidate itemsets during  

intersecting process.  

Incremental approach is done in transaction (adding row) or in number of itemsets (adding column). 

The advantage of an incremental storage structure is that each candidate itemsets in the search space has its 

counterpart in the database, such that its support can be computed by a few simple database operations,  

rather than a full scan of a database. The support of a 1-itemset, 𝐴 is simply the size of column 𝐴 in the database. 

So in the first pass of the large set discovery algorithm, it only has to select 1 − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 whose columns have 

size above support threshold 𝜎. The support of  2 − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡, 𝐴𝐵 is the number of transactions that contain 

both 𝐴 and 𝐵. Since the tids for 𝐴 and 𝐵 are stored in separate column in database, then how many tids would 

appear in both 𝐴 and 𝐵? Thus the computation is the intersection between 𝐴 and 𝐵 i.e. 𝐴 ∩  𝐵. But the problem 

arises especially in the second pass where many candidates are generated with only very few prove to be large. 
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For example, there are 600 itemsets out of 1000 itemsets in the first pass are large. Then, in the second pass,  

the itemsets will be 6002/2 = 180000 candidates of which only 44! are actually large. Thus, to find these, 

there are 180000 intersections that consumes over 99% of total database processing time [30]. 

The terminology min_supp used in the pseudocode is to refer to min_support threshold value that is 

determined in terms of percentage where the user-specified min_supp value will be divided by 100 and multiply 

with total rows (records) of each datasets. Next in each loop, starting with the first loop, if the support is greater 

than or equal (>=) to min_supp, then, getting the tidset intersection and diffset intersection in i-Eclat-tidset 

and i-Eclat-diffset respectively between 𝑖𝑡ℎ column and 𝑖 + 1𝑡ℎ column and save to db. In i-Eclat-sortdiffset, 

itemsets are first sorted in descending order depending upon the highest to lowest value of itemset’s 

equivalence class. Then the diffset value between 𝑖𝑡ℎ column and 𝑖 + 1𝑡ℎ column will be encountered and 

save to db while for i-Eclat-postdiffset, the first level of looping is based on tidsets process, follows by  

the second level onwards of looping are getting the result of diffset between 𝑖𝑡ℎ column and 𝑖 + 1𝑡ℎ column 

before saving to db. 

 

 

 
 

Figure 3. Physical design of i-Eclat engine 
 

 

6. EXPERIMENTATION 

All experiments are performed on a Dell N5050, Intel®Pentium ®CPU B960@2.20 GHz with 8 GB 

RAM in a Win 7 64-bit platform. The software specification for algorithm development is deployed using 

MySQL version 5.6.20, Apache/2.4.10 (Win32) OpenSSL/1.0.1i PHP/5.5.15 for our web server, php as a 

programming language. The retrieval of benchmark datasets are from (Goethals, 2003) in a *.dat file format. 

The two (2) category of datasets are dense (i.e. a dimension with a high probability that one or more data points 

is occupied in every combination of dimensions) and sparse (i.e. a dimension with a low percentage of available 

data positions filled). The overall characteristics of benchmark datasets is tabulated in Table 1.  
 

 

Table 1. Database characteristics 
Database #Size (KB) # Length (attribute) #Item #Records (transaction) Category 

Chess 334 37 75 3196 Dense 

Mushroom 557 23 119 8124 Dense 

Pumsb_star 1130 48 2088 49046 Dense 

Retail 9490 45 16469 88162 Sparse 

T10I4D100K 5630 26 1000 100000 Sparse 

 

 

7. RESULTS AND DISCUSSION 

The performance of five (5) dense and sparse datasets is measured based on (1) given.  

The example of percentage of reduction ratio of tids in 𝐵 as compared to tids in 𝐴 is calculated based on (1) 

that determines the outperform percentage of 𝐵. 
 

(𝑡𝑖𝑑𝑠 𝑖𝑛 𝐴)−(𝑡𝑖𝑑𝑠 𝑖𝑛 𝐵)

𝑡𝑖𝑑𝑠 𝑖𝑛 𝐴
𝑥100 % (1) 

 

We reveals the experimentation with only taking 50% min_supp threshold value that we test for tidset, 

diffset, sortdiffset and postdiffset algorithms. Figure 4 plots the graph of full chess dataset running in Eclat 

algorithm and developed i-Eclat algorithm. The i-Eclat outperforms in tidset, diffset and postdiffset with 3%, 

32% and 54% respectively lesser in execution time, while Eclat outperforms with 48% in sortdiffset algorithm. 

Diffset shows a tremendous result in execution time with the least in seconds. The mushroom dataset projects 
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about a different trend in pattern between Eclat and i-Eclat engine as compared to chess as illustrated in  

Figure 5. i-Eclat outperforms in tidset, diffset and postdiffset with 74%, 71% and 63% better. But in sortdiffset, 

it turns to Eclat which performs better with 81 in percentage. 

The third dense dataset, pumsb_star shows only a small difference of performance between i-Eclat 

and Eclat engines. Figure 6 plots the graphs of full pumsb_star such that i-Eclat outperforms only at a small 

ratio where only 10% is recorded in diffset. This follows by sortdiffset, postdiffset and tidset with only 6%, 

3% and 1% better performance. The results of first in sparse category which is retail dataset clearly depicts in 

Figure 7. The percentage recorded in all algorithms of retail dataset shows a different trend as compared to 

other dense datasets where Eclat engine outperforms in most of retail dataset in small segments except in full 

retail dataset. Overall performance evaluation of retail shows that Eclat wins with only 5%, 16%, 9% and 7% 

better performance in tidset, diffset, sortdiffset and postdiffset respectively. The T10I4D100K dataset is  

the last in sparse category in this experimentation. Unlike in retail, i-Eclat outperforms in most of  

the algorithms either in full dataset or in small increment of records and itemsets. Figure 8 depicts the graph 

where i-Eclat engine seems to outperform with 14% better in tidset, 17% in diffset, only 6% in sortdiffset while 

the last postdiffset is recorded as 31% better in time execution. 

To summarize, the performance of either Eclat engine that is developed by flushing the cache memory 

(using memory capacity) or i-Eclat engine that is developed by writing to text file (using disk storage capacity), 

both engines confirms the best algorithm in vertical mining of frequent itemsets belongs to diffset  

algorithm [5], follows by sortdiffset [7], next is the new developed postdiffset algorithm [19] by the researcher 

and the last ranking goes to tidset [4]. For the performance of sortdiffset, the results seem to contradict  

with [7]. Due to MySQL implementation, the time taken for sorting the diffset of itemsets has resulted in longer 

time execution. To observe on postdiffset algorithm, it turns to outperform in i-Eclat engine with 63% in 

mushroom, 31% in T10I4D100K and only 3% in both pumsb_star and retail. However, in chess, postdiffset is 

outstanding in Eclat engine for 54%. For overall datasets, the results indicate that i-Eclat outperform Eclat for 

17% both in chess and T10I4D100K, 69% in mushroom, 5% and 8% in pumsb_star and retail datasets. From 

these percentage figures, dividing with five (5) datasets, average performance of i-Eclat is concluded to be 

23.37% better than Eclat engine.  
 

 

  
  

Figure 4. Chess in  

Eclat engine vs i-Eclat engine 

Figure 5. Mushroom in  

Eclat engine vs i-Eclat engine 
 

 

  
  

Figure 6. Pumsb_star in  

Eclat engine vs i-Eclat engine 

Figure 7. Retail in  

Eclat engine vs i-Eclat engine 
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Figure 8. T10I4D100K in Eclat engine vs i-Eclat engine 

 

 

8. CONCLUSION AND FUTURE DIRECTIONS 

The research proves that the more increment in itemset (column) resulting in the more usage of 

memory as compared to the increment of records of transaction as indicated in Figure 4 to Figure 8. This is due 

to the increment of itemsets produces the higher cardinality of intersection between each item that needs to be 

conducted in vertical mining. That is why the much higher execution time can be seen in chess, pumsb_star 

and retail datasets in spite of mushroom and T10I4D100K datasets. Either Eclat or i-Eclat engine,  

the performance of both engines is actually depend upon the nature of dataset itself when testing in tidset, 

diffset, sortdiffset and postdiffset algorithms. However, both engines conforms that among these four (4) 

algorithms, diffset outperforms other algorithms by certain order of magnitude in all selected datasets.  

For our next direction in experimentation, we may tackle the issue of infrequent pattern, whether it can fit and 

provide hidden valuable pattern for analysis. 
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