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 The study presents a road pavement crack detection system by extracting 

picture features then classifying them based on image features. The applied 

feature extraction method is the gray level co-occurrence matrices (GLCM). 

This method employs two order measurements. The first order utilizes 

statistical calculations based on the pixel value of the original image alone, 

such as variance, and does not pay attention to the neighboring pixel 

relationship. In the second order, the relationship between the two pixel-pairs 

of the original image is taken into account. Inspired by the recent success  

in implementing Supervised Learning in computer vision, the applied method  

for classification is artificial neural network (ANN). Datasets, which are used 

for evaluation are collected from low-cost smart phones. The results show that 

feature extraction using GLCM can provide good accuracy that is equal  

to 90%. 
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1. INTRODUCTION 

Evaluating road quality is an important task in many countries. For example, in France, national roads 

are examined every three years to estimate reparations, required construction, and to estimate quality.  

These aspects can be calculated to estimate crack on road pavement surface based on compliance with 

regulations, micro texture, macro texture, and surface degradation. In Banjarmasin, Indonesia, the condition  

of subgrade, which mostly consists of peat is the major origin of road crackings. Considering the vast wetlands 

of South Kalimantan reaching 382,272 ha is a major problem to be tackled. All road evaluation inspections in 

Indonesia are done manually, whereas in other countries automatic systems have been performed with  

non-invasive techniques such as image processing [1-3]. 

There are several ways to detect road damage including analyzing road conditions based on images 

taken on the road surface. Research on detection of road surface damage using image processing techniques 

has been actively carried out, achieving very high detection accuracy. Many studies only focus on detecting 

the presence or absence of damage. However, in a real-world scenario, when road managers from  

the management agency need to repair such damage, they need to clearly understand the type of damage to 

take effective action. In addition, in many previous studies, researchers obtained their own data using different 

methods. Therefore, there is no uniform road damage dataset available openly, which causes no benchmark for 

detection of road damage [4, 5].  

This research will propose an intelligent system in image processing to detect cracks on road surfaces. 

To examine road infrastructure efficiently, especially road conditions, several methods using laser technology or 

image processing have been studied [6-9]. However, the technique of using a laser requires a high cost [10, 11]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Futhermore, at a lower cost, there were several studies using computer vision approach for solving this problem 

in 11 years [12-17]. In computer vision, it is first necessary to extract features from the dataset to obtain 

quantitative data from image data, then the next process is to detect road pavement cracks. Research conducted 

by E. Zalama, G. Jaime, and R. Medina [4] demonstrated that using Bank Gabor filter for feature extraction 

methods in detecting road pavement cracks, the accuracy obtained is 90%. The Bank Gabor filter method 

represents the image in a one-angle orientation scale, while the GLCM represents it in 4 angles namely 00, 450, 

900, 1350, so that the extraction of the resulting features will represent the extracted image more.  

For the detection stage, monitoring the process is considered as one of the most important tasks in  

the detection process. Many researchers utilize Supervised Learning in the detection process, especially  

the ANN method. A road detection strategy using the ANN method for the classifier was introduced by  

M. Mokhtarzade, H. Ebadi, and M. J. Valadan Zoej, where the dataset was satellite imagery [5]. Researches 

done by I. Kahraman, M. Kamil Turan, and I. Rakip Karas also apply ANN in detecting road cracks with results 

that the ANN method is able to detect road cracks with 93.35% success [18]. Referring to those researches, 

this study proposes ANN method in detecting road crack and also applies GLCM to extract features from 

images into quantitative data.  

 

 

2. RESEARCH METHOD 

To detect road surface cracks, features of a road cracking are required. The features are shape feature 

and texture feature, where these features can be used to distinguish road conditions [19, 20]. Figure 1 shows 

the stages of the road surface crack detection process. Further explanation of Figure 1:  

 

 

 
 

Figure 1. Proposed road surface crack detection stages 

 

 

a. Road image data 

The collected data is labelled as a cracked road image. Road images are taken using low-cost 

smartphone camera, where the distance between the road surface and the camera is 1 meter in front  

of the camera. Data is collected from some roadway sections in Banjarmasin, which consists of two types, 

namely cracked road and non-cracked road images. Figure 2 presents an example data of road surface  

with cracks. 

b. Data pre-processing 

In the pre-processing stage, image data is segmented first. Segmentation is the process of separating 

objects contained in an image, which aims to ease the processing of digital image on each object.  

Then thresholding, which is the process of changing a grayscale image into a binary or black and white image.  

The goal of thresholding is to see clearly which areas are included in the object and in the background of an 

image. Next step is morphology. Morphology is a digital image processing technique which uses shapes as  

a reference in processing the image. The value of each pixel in a digital image is obtained from the results  

of a comparison between the corresponding pixels in the digital image and the adjacent pixels. Morphology 

operations depend on the order of pixels and do not pay attention to the value of pixels; thus, this technique 

can be used to process binary images and grayscale images. 

c. Feature extraction 

Feature extraction is applied to retrieve assessment information from the analysis and calculations 

performed on digital images [21, 22]. The results of this extraction have a significant effect on the results  

of the classification later. The feature extraction process is carried out using Matlab software, where the GLCM 

method is applied in the feature extraction of road pavement crack detection. GLCM utilizes texture 

calculations in the second order. Measurement of textures in the first order assigns statistical calculations based 

on the pixel value of the original image, such as variance, and does not pay attention to neighboring pixel 
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relationships. In the second order, the relationship between pairs of two original image images is taken into 

account [23]. 

For example, f (x, y) is an image of size Nx and Ny that has pixels with the possibility of L levels  

and 𝑟 ⃗⃗  is a spatial offset direction vector. 𝐺𝐿𝐶𝑀𝑟 (𝑖, 𝑗) is defined as the number of pixels with 𝑗 ∈ 1, . . , 𝐿 that 

occurs in offset 𝑟 ⃗⃗  to the pixels with values 𝑖 ∈ 1, . . , 𝐿, which can be stated in the (1) [24]. 

 

𝐺𝐿𝐶𝑀𝑟 (𝑖, 𝑗) = #{(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ (𝑁𝑥, 𝑁𝑦) × (𝑁𝑥, 𝑁𝑦)|𝑓(𝑥1, 𝑦1) = 𝑗𝑟 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗}  (1) 

 

In this case, offset 𝑟 ⃗⃗  can be an angle and/or distance. For example, the Figure 3 shows the four directions  

for GLCM. 
 

 

  
 

Figure 2. Road surface cracking image 

 

Figure 3. Example directions for GLCM  

with angles 00, 450, 900, dan 1350 

 
 

d. Road detection 

Road crack detection can be done after the extraction of road image features. The data will be divided 

into two parts, namely training data and testing data. After that the classification of crack roads and good roads 

will be carried out using a machine learning approach which is artificial neural network (ANN) method. ANN is 

a processor that carries out large-scale distribution, which has a natural tendency to store a recognition that has 

been experienced, in other words ANN has the ability to be able to do learning and detection of an object [25]. 

e. Result evaluation and validation 

In performance measurement using confusion matrix is used to measure how well the detection 

performance of the ANN method is to recognize tuples from different classes. TP and TN provide information 

when the detection results are true, while FP and FN tell when the values are false [4, 26]. Then after  

the confusion matrix obtained, Accuracy, Precision and Recall value can be calculated. The Accuracy value is 

obtained by (2). The Precision value is obtained by (3). The Recall value is obtained by (4) [27, 28]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑥100% (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑥100% (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑥100% (4) 

                

where: 

 TP is true positive, which is the amount of positive data that is properly classified by the system. 

 TN is true negative, which is the amount of negative data that is properly classified by the system. 

 FN is false negative, which is the amount of negative data but classified incorrectly by the system. 

 FP is false positive, which is the amount of positive data but is classified incorrectly by the system 
 

 

3. RESULTS AND ANALYSIS 

3.1.   Data processing  

Image data will be cropped first to uniform all data. The amount of data is 100, which is labeled crack 

and no_crack. The data to be processed is a dataset of 256x100 pixels. Then feature extraction will be performed 

to all images. Examples of dataset are depicted in Figure 4. 
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(a) 

 

(b) 

 

Figure 4. Example of dataset with (a) crack and (b) no crack 

 

 

3.2. Feature extraction 

Feature extraction utilizes the gray level co-occurrence matrix (GLCM), which applies five quantities, 

namely angular second moment (ASM), contrast, inverse different moment (IDM), entropi, and  

correlation [29-31]. Examples of the results from feature extraction can be seen in Table 1. The values from 

the feature extraction will be the input parameters in detecting road cracks.  

 

 

Table 1. Data of feature extraction result 
No Label ASM Contrast IDM Entropy Correlation 

1 crack 3,37E+11 1,78E+17 0.123868916860676 8.515.177.221.615.980 9,10E+11 

2 crack 3,54E+11 1,46E+17 0.148823309991595 8.419.985.894.605.640 9,11E+11 
3 no_crack 4,22E+11 1,51E+17 0.133652331513828 8.235.894.329.981.770 0.001376067169563 

4 no_crack 8,06E+11 1,25E+17 0.170254651932088 7.773.661.510.499.480 0.001538142413451 

5 crack 2,37E+11 4,37E+17 0.084879178580005 8.854.083.850.684.690 7,78E+11 

 

 

3.4. Result and evaluation 

Before training the data, the learning rate is set 0.01 with momentum 0.9. The network architecture 

model which is obtained from the training dataset produces a network architecture with 5 inputs, namely: ASM, 

contrast, IDM, entropy, correlation; as well as with 5 hidden layers. The network architecture is shown  

in Figure 5. As for the weights of hidden layer are shown in Table 2. These weights were generated from  

the training data results of 500 epoch repetitions. The network architecture model brings about two groups  

of output, namely crack and no crack. Table 3 shows the resulting weight outputs, meanwhile Table 4 exhibits 

the assessment results. 

 

 

 
 

Figure 5. The best network architecture from training datasets 

 

 

Table 2. The weight of hidden layer 
Hidden Layer Threshold ASM Contrast IDM Entropy Correlation 

1 -0.088 0.064 0.002 -0.149 -0.139 0.072 

2 -0.756 0.132 0.132 -0.470 -1.541 -2.232 

3 0.569 -0.638 0.085 0.394 1.307 1.696 
4 -0.214 0.289 -0.093 -0.563 -1.011 -0.609 

5 0.708 -0.847 0.030 0.298 1.496 2.627 
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Table 3. The weight output 
Output  

Layer 
Node1 Node2 Node3 Node4 Node5 Threshold 

Crack -0.280 -2.177 1.322 -1.056 2.057 -0.602 
No_crack 0.274 2.158 -1.299 1.098 -2.072 0.588 

 

Table 4. The Assessment results 
Measurement Results 

Accuracy 90.00% 

Precision 93.50% 
Recall 87.50% 

 

 

 

The assessment results in Table 4 demonstrate that ANN Backpropagation method reaches 90% 

accuracy for the detection of road damage, which can be categorized as high accuracy level. It can also be seen 

that the precision value is higher than the accuracy value, namely 93.50%. Meanwhile, the recall value has  

the lowest value, which is 87.50%. The highest accuracy is obtained with a value of 90%. This is because  

the data is well prepared, and the data used is data from crack and non crack data images (good asphalt).  

No other road damage data is presented. The value of precision is 93.50% which is higher than the accuracy. 

This means that the accuracy of the detection area is higher than the accuracy of the detection. The recall result 

is 87.50%. this result is categorized as good. This result obtained from total correct data detection each class 

(crack and non crack data) divided by all data classified correctly.  

 

 

4. CONCLUSION 

The proposed approach of road crack detection is able to identify cracks with an accuracy of 90%. 

The image processing technique applies feature extraction using the GLCM method. This method produces 

image feature extraction from four angles namely 00, 450, 900, and 1350. The experimental results demonstrate 

that a set of 4 angles, consisting of properties derived from projective integrals and crack object properties 

cooperates to achieve the most accurate prediction. In addition, the inclusion of characteristics of cracked 

objects such as ASM, contrast, IDM, entropy and correlation has been proven to provide more information for 

classification. This fact is exhibited through the good experimental results. ANN is a supervised learning 

approach that has been implemented to study the mapping function between the image input and output features 

of crack and no crack classifications. Based on the experimental results, ANN can be concluded as a competent 

classification method. Thus, the application of ANN integrated with GLCM feature extraction method is highly 

recommended for the detection of road pavement cracks. Future work should also investigate the applications 

of different algorithms and other feature extraction methods in order to improve prediction accuracy. Last but 

not least, it is necessary to collect more image datasets to improve the ability of the current road pavement 

crack detection model. 
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