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 Schizophrenia is a mental illness with a very bad impact on sufferers, attacking 

the part of human brain that disables the ability to think clearly. In 2018, 
Rustam and Rampisela classified Schizophrenia by using Northwestern 

University Schizophrenia Data, based on 66 variables consisting of group, 

demographic, and questionnaires statistics, based on the scale for the 

assessment of negative symptoms (SANS), and scale for the assessment of 
positive symptoms (SAS), and then classifiers that used are SVM with 

Gaussian kernel and Twin SVM with linear and Gaussian kernel. Furthermore, 

this research is novel based on the use of random forest as a classifier, in order 

to predict Schizophrenia. The result obtained is reported in percentage of 
accuracy, both in training and testing of random forest, which was 100%. This 

classification, therefore, shows the best value in contrast with prior methods, 

even though only 40% of training data set was used. This is very important, 

especially in the cases of rare disease, including schizophrenia. 
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1. INTRODUCTION  

Schizophrenia is a mental illness that has a very bad impact on sufferers, based on its ability to 

attack parts of the human brain, thus disabling the persons ability to think clearly [1]. Generally, patients 

experience a change either behaviorally or on the mind, which subsequently affects reality. This disease 

possesses the propensity to attack everyone at any age, the average attacks starting at the age of 20s in men, 

while in women, it was observed at the end of 20s [1]. It is, therefore, important to proficiently identify  

the symptoms on time, in order to prevent the disease from occuring in earnest. Schizophrenia is generally 

divided with three symptoms, including 1) the positive, presented with unnecessitated extra brain activities, 

including hallucinations, 2) the negative, indicated by the loss of brain activities, 3) the cognitive, which is 

exhibited as challenges with ability to remember and think. These are severe facts that confer potential 

negative effects on the life of sufferers, and their mortality rates are 2 to 2.5 times higher than the general 

population [2], 10% commited suicide and 20-40% attempted suicide at least once [3]. Then, the cause of 

schizophrenia has not been determined for sure [4] and this illness has been evaluated to get worse due to the 

incompetence of early detection, hence, the need to identify other approaches for detection, and one of which 

involves the use of computational methods, comprising of machine learning.  

However, several papers have attempted utilizing this technique in the diagnosis of schizophrenia, 

including SVM with Gaussian kernel, Twin SVM with linear and Gaussian kernel [5], linear discriminant 
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analysis and k-Nearest neighbor [6], fisher linear discriminant analysis [7], Elastic Net, as well as least 

absolute shrinkage and selection operator [8]. This current research involved the use of random forest as a 

classify, although it has widely been used in various studies, including the prediction of bank financial 

failures, with accuracy of 93% [9], diabetes mellitus at 80.8% [10], automated diagnosis of heart disease at 

83.6%, applying the weighted random forest [11], classify prostate cancer [12], chronic kidney disease [13] 

and osteoarthritis disease [14]. Hence, the selected approach has proven the capability of this classifier to 

apply to any problem, exhibiting good model performance in the process. This research is organized as 

follows: section 1 provides background of details, while the second specifies data and research method used. 

In addition, result and analysis were discussed in section 3, and finally, conclusions are included  

in section 4. 
 

 

2. DATA AND RESEARCH METHOD 

2.1.  Data 

Information from the database of Northwestern University Schizophrenia Data was used in this  

study [1]. Furthermore, there were 392 observations divided into 4 groups, with distributions as seen in  

Table 1. The study followed the grouping used by Rustam and Rampisela in the paper entitled “Support vector 

machines and twin support vector machines in the classification of schizophrenia data” [5]. This was because of 

the similarity in research focus, which was based on the categorization into schizophrenics and  

non-schizophrenics only, which served as the group variable [2]. Non-schizophrenics group consists of healthy 

siblings of the patients, the control, and siblings of control. A total of 66 data variables were collected, including 

the group, and demographics, consisting of gender, dominant hand, race, ethnicity, and age, using 

questionnaires statistics of scale for the assessment of negative symptoms (SANS) [15] and scale for  

the assessment of negative symptoms (SAPS) [16], as shown in Table 2. 

 

 

Table 1. Distribution of group 
Group Number of observations 

Schizophrenics 171 

Siblings of Schizophrenics 44 

Control 

Siblings of Control 

111 

66 

 

 

Table 2. The variable of schizophrenia data 
𝑛th 

Variable 

Data Group Variable Description 

1 - 34 Questionnaires 

of SAPS 
SAPS𝑖, 

𝑖 = 1, … , 34 

SAPS is used to evaluate the positive symptoms of schizophrenia, SAPS is 

divided into 4 main sections containing 34 different symptoms, namely 

hallucination, delusion, bizarre behavior and thought disorder [16]. The data is in 

scale (0.5) 

35 - 60 Questionnaires 

of SANS 
SANS𝑗, 

𝑗
= 35, … ,60 

SANS is used to evaluate the negative symptoms of schizophrenia, SANS is 

divided into 5 main sections containing 25 different symptoms, namely emotional 

reaction decline, alogia, avolition and apathy, anhedonia and asociality, and 

attention [15]. The data is in scale (0.5) 

61 Demographic Gender Gender is divided into 2 categories: 1) Male and 2) Female  

62 Demographic Dominant 

Hand 

Dominant Hand is divided into 2 categories: 1) Left and 2) right  

63 Demographic Race  

64 Demographic Ethnicity Ethnicity is divided into 3 categories: 1) Kaukasia, 2) Africa-America, and  

3) others  

65 Demographic Age Integer (13.66) 

66 Group Group Group is divided into 2 classes: 0) Non-Schizophrenics and 1) Schizophrenics  

 

 

2.2.    Research method 

2.2.1. Bootstrap 

In 1948, Queneiville introduced Jackknife as a resampling method, while Bradley Efron initiated 

bootstrap as its revolution in 1979, serving as a resampling method with replacement [17]. This allows for  

the creation of new data sets from the original, through repeatedly sampling the observations, as this is more 

feasible, in contrast with the method that required obtaining data from the population frequently [18].  

This approach is a training data set, denoted as 𝐵, which contains 𝑛 observations, randomly selected to 
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produce the new set, 𝐵∗1, indicating a similarity is size with the original. In addition, sampling was 

performed with replacement, which signifies the propensity of same observations appearing more  

than once [19]. The process is conducted continuously to the point where 𝑇 new data set, 𝑇 is capable  

of setting personally (e.g 𝑇 = 100) or tune by an independent validation data set. 

 

2.2.2. Random forest 

In 2001, Breiman introduced random forest as a categorization tool, consisting of a collection  

of tree-structured classifiers {ℎ(𝒙,𝑘), 𝑘 = 1, … }, where {𝑘} are identical independent distributed random 

vectors, where each tree casts a unit vote for the most popular class at input 𝒙 [20].The approach used is 

aimed at improving stability and accuracy of the decision tree, through the creation of numerous units from 

existing training data, using the bootstrap method [21]. Random forest is capable of improving accuracy 

through randomization and voting methods, and it is also able to reduce the correlation between trees, 

without significantly reducing the strength of each [22]. Therefore, when overfitting is observed in a 

particular training data, others do not behave in the same manner [20]. Based on Breiman’s paper,  

the process building of numerous trees does not create an overfit, although it produces a generalization error 

that converges to a value [20]. 

Algorithm random forest for classification [9]. 

1. Given the training data set, with 𝑛 and 𝑚 as observations and variables, respectively 

2. For 𝑏 = 1 to 𝐵 

a. Draw a bootstrap sample with 𝑛 number of observations from the training (original) data set 

b. Build the decision tree 𝑇𝑏 from each new result derived, where individual nodes are chosen at 

random. 

i. Select 𝑝 variable at random from 𝑚, with 𝑝 ≤ 𝑚, where 𝑝 = 1,2, … 𝑜𝑟 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 √𝑚 [23]. 

ii. Choose the best feature that provides satisfactory Information Gain or Gini Index [24]. 

iii. Split the node 

c. Grow each without pruning 

3. Output the ensemble of decision trees {𝑇𝑏}1
𝐵 

4. Conduct voting, i.e., if �̂�𝑏(𝑥) is the class prediction of the 𝑏th random forest tree,  

then �̂�𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {�̂�𝑏(𝑥)}1

𝐵 

The algorithm above can be representative with Figure 1. 
 

 

 
 

Figure 1. Flow of random forest 
 

 

2.2.3. Evaluation of model performance 

The evaluation of model performance is important, due to its ability to provides knowledge on  

the tools’ efficiency of classifying data. This was assessed through the measurement of accuracy, obtained 

from the result of model with confusion matrix, where a high value indicates a good condition of  

the classification model [21]. Basically, it is known to contain comparable information with the result made 

by the model, including the binary type of classification, which indicates the presence of 2 output class, 

encompassing schizophrenics and non-schizophrenics. However, there are 4 parts to this confusion matrix: 
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1) TP: True Positive, observed on instances where schizophrenia is detected as Schizophrenics 

2) TN: True Negative, is when non-schizophrenia is detected as non-schizophrenics 

3) FP: False Positive, is seen in cases where non-schizophrenia is detected as schizophrenics 

4) FN: False Negative, is when schizophrenia is detected as non-schizophrenics 

Table 3 shows the confusion matrix used in this reserch. 
 

 

Table 3. Confusion matrix 
  Actual Class 
  Schizophrenics Non-Schizophrenics 

Predicted Class 
Schizophrenics TP FN 

Non-Schizophrenics FP TN 

 

 

Therefore, based on the value of TP, TN, FP, and FN from the matrix, it is possible to obtain the valued 

accuracy with the following formula: 
 

Accuracy =  
TP+TN

TP + TN + FP + FN
  (1) 

 

 

3. RESULTS AND ANALYSIS 

3.1.  Preprocessing data 

There 66 variables in schizophrenia Data, therefore, feature selection was conducted before fitting 

the model, in order to improve accuracy. This was based on the percentage of missing data from variables 

less than 10%, thus, the feature is selected. Then, If the individual variance is more than that in the data 

collected from group, then choices are made based on those conditions, with 60 used in the model. Another 

means of promoting accuracy is by tuning the hyperparameters, which include those that affect the model 

structure and also the result output, therefore, there is need to identify its optimal set [25]. This is obtained by 

learning various algorithms with different sets, and subsequently comparing the results of eachs’ 

performance, also known as tuning the model. Furthermore, the paper by Saragih and Rustam was followed 

for the use criterion (Gini and Entropy) [9]. The number of estimators/trees serves as hyperparameters to 

improve the accuracy, which collectively with the criterion is a function that measures the equality of a split, 

entropy for the Information Gain and Gini index [9]. 
 

3.2.  Result and analysis 

A study [5] applied 4 types of SVM on the same schizophrenia data, therefore, the main goal in  

this research is novel, through the use of random forest, in order to enhance predictability. This research 

required that the algorithm was run 10 times, and the repetition was performed due to the presence of element 

random in this experiment. As mention in section 3.1, the model tuning was conducted with the use  

of 2 hyperparameter combinations, and Table 4 provides the result of classification, using random forest with 

entropy, while gini was the criterion in Table 5. In this research, we used scikit-learn library. From Table 4, 

random forest with entropy in accuracy of training data was able to correctly classify schizophrenia data, 

with a 100% accuracy level for all compositions of training data set, and number of trees. This occurs on 

instances where the number of trees is 50 and 100 for 50-80% of the composition training data. From  

Table 5, the gini in accuracy of training data for random forest, provides the same result as entropy in the 

classification of schizophrenia data, which is 100% for all data set, and number of tree. Therefore, if this 

percentage was obtainable with entropy for testing in 50-80% training data set, then the result of gini in 40-

80%, with the number of trees is 100, is correct.  
 

 

Table 4. Accuracy of schizophrenia data classification using random forest with entropy as criterion 
Percentage of  

Data Training 

(%) 

Number of Tree 
10 50 100 10 50 100 

Accuracy of Testing Data (%) Accuracy of Training Data (%) 
10 94 95 98 100 100 100 
20 95 96 98 100 100 100 
30 97 98 99 100 100 100 
40 96 99 99 100 100 100 
50 97 100 100 100 100 100 
60 99 100 100 100 100 100 

70 100 100 100 100 100 100 

80 100 100 100 100 100 100 
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Table 5. Accuracy of schizophrenia data classification using random forest with gini as criterion 
Percentage of  

Data Training  

(%) 

Number of Tree 

10 50 100 10 50 100 

Accuracy of Testing Data (%) Accuracy of Training Data (%) 

10 93 96 98 100 100 100 

20 95 95 98 100 100 100 

30 96 98 98 100 100 100 

40 96 99 100 100 100 100 

50 96 99 100 100 100 100 

60 97 100 100 100 100 100 

70 100 100 100 100 100 100 

80 100 100 100 100 100 100 

 

 

Based on Table 4 and Table 5, it is seen that a greater composition used is able to produce higher 

accuracy, due to the presence of more data learned by the model. Hence, tuning indicates the best accuracy 

on instances where the criterion entropy is with number of estimators as 100. However, it is seen that the 

results are similar for each composition training data and number of estimators. As said in Section 2, 

schizophrenia data was followed that same way as in the paper written by Rustam and Rampisela [5], due to 

a desire to compare performance results (accuracy) of the different methods used. Table 6, therefore, shows 

the comparison of each methods’ Testing accuracy. Table 6 shows the highest accuracy occurring at random 

forest, which was in contrast with other SVM methods used in the paper of Rustam and Rampisela [5]. This 

was recorded at a level of 100%, when the percentage of training data is 40-80%, while others only achieved 

90% at 60-80% 

 
 

Table 6. Performance results 

Training Data 

(%) 

Linear SVM 

(%) 

Gaussian SVM 

(%) 

Linear Twin 

SVM (%) 

Gaussian Twin 

SVM (%) 

Random Forest (%) 

Accuracy (%) 

Std 

deviation 

10 88 88 89 89 98 0.0001 

20 89 89 89 89 98 0.0002 

30 89 89 89 89 98 0.0001 

40 89 89 89 89 100 0 

50 89 89 89 89 100 0 

60 90 90 90 90 100 0 

70 90 90 90 90 100 0 

80 90 90 90 90 100 0 

 

 

4. CONCLUSION 

Classification of schizophrenia has previously been conducted by Rustam and Rampisela, using 

SVM models, therefore, this research was novel in the use of random forest to predict based on the 

information collected from the database of Northwestern University Schizophrenia Data, which was also 

used by Rustam and Rampisela. Therefore, it was established that random forest with entropy and gini shows 

similar results, although it only slightly performs better with gini and the number of estimators being 100. 

Subsequently, this technique was also able to predict with good accuracy, using 40% training data,  

which was in contrast with other methods used in prior studies which insist on the use of 80%, in order to 

obtain 90% accuracy. This is very important, especially in the prediction of rare disease, where data is 

difficult to obtain. 

In comparison with past studies using the same data, random forest was observed to show better 

accuracy, at 100% for training, and also testing. This approach is, therefore, expected to be relevant in the 

medical field, especially in the prediction of schizophrenia, and subsequently in other diseases, which is 

currently hard in diagnosis, hence, enhancing the accuracy of the medical team in providing treatment. It is 

suggested that successive research use feature selection to identify the important feature assists the medical 

practitioners to focus on several data points, and also that the application of random forest is adopted in other 

dataset with updated and superior dimension.  
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