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 Transfer learning (TL) is a technique of reuse and modify a pre-trained network. 

It reuses feature extraction layer at a pre-trained network. A target domain in TL 
obtains the features knowledge from the source domain. TL modified 

classification layer at a pre-trained network. The target domain can do new tasks 

according to a purpose. In this article, the target domain is fundus image 

classification includes normal and neovascularization. Data consist of  
100 patches. The comparison of training and validation data was 70:30.  

The selection of training and validation data is done randomly. Steps of TL i.e 

load pre-trained networks, replace final layers, train the network, and assess 

network accuracy. First, the pre-trained network is a layer configuration of  
the convolutional neural network architecture. Pre-trained network used are 

AlexNet, VGG16, VGG19, ResNet50, ResNet101, GoogLeNet, Inception-V3, 

InceptionResNetV2, and squeezenet. Second, replace the final layer is to replace 

the last three layers. They are fully connected layer, softmax, and output layer. 
The layer is replaced with a fully connected layer that classifies according to 

number of classes. Furthermore, it's followed by a softmax and output layer that 

matches with the target domain. Third, we trained the network. Networks were 

trained to produce optimal accuracy. In this section, we use gradient descent 
algorithm optimization. Fourth, assess network accuracy. The experiment results 

show a testing accuracy between 80% and 100%.  
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1. INTRODUCTION  

A system requires learning process to perform certain tasks. The tasks include image enhancement, 

classification, clustering, recognition, and detection. Data processing needs to do it. Data is divided into two 

parts, training and testing data. In conventional systems, training data processed to get knowledge.  

The problem arises when the amount of training data is limited, the learning process doesn’t well perform. 

An alternative solution to the problem is transfer learning. It is a machine learning method that works by 

utilizing existing models. Transfer learning modifies and updates parameters on the model. Transfer learning 

makes modified models as learning with different tasks. The model used for transfer learning has learned 

from other data, so learning is not needed from scratch. The model has recognized features such as textures, 

shapes, and colors as a result of previous learning. 

https://creativecommons.org/licenses/by-sa/4.0/
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The benefit of transfer learning is well learning even though limited training data. Contrast to 

traditional machine learning, every learning process always requires relatively large amounts of data [1].  

The difference between traditional machine learning and transfer learning is found in Figure 1. Nowadays, 

transfer learning has been applied to robotics [2, 3] image classification [4, 5], sentiment classification [6], 

game technology [7, 8] and text classification [9]. Generally, the type of transfer learning used in deep 

learning is a pre-trained network. The phase for conducting transfer learning as follows:  

- Select a specific model. Pre-trained network models are taken from existing models. 

- Reused model. Pre-trained models can be used as a starting point for carrying out a new task. A new task 

can use the whole part of a pre-trained model or partly depends on system requirements. 
 

 

  
(a) (b) 

  

Figure 1. (a) Traditional machine learning, (b) Transfer learning, modified from 
 

 

- Modification of the model. Modifications are made at the last fully connected layer 

This paper discussed classification of fundus images. Classification for distinguishing normal and 

neovascularization. Neovascularization is the appearance of new vessels in optic disk or other surfaces  

of retina. Neovascularization features of the blood vessels are brittle, irregular in shape, and easily lost. 

Neovascularization is a severe diabetic retinopathy (DR). Neovascularization consists of two categories: 

neovascularization on the disc (NVD) and neovascularization elsewhere (NVE). NVD is a new vessel  

in the optic disc while NVE is a new vessel in the entire surface of the retina except in optic disc [10]. 

neovascularization of the fundus images is shown in Figure 2. 

There are previous studies that classified fundus images. Tennakoon et al. classified two categories: 

gradable and ungradable based on image quality fundus. The model uses shallowNet and a modified AlexNet 

model. A fully connected layer (FCL) fc7 is a layer for feature extraction. FCL fc8 is the fine-tuning layer for 

classification. Classification using SVM, boosted tree, and k-NN methods. The data consists of 463 images. 

The highest accuracy is 98.27% using shallowNet [11]. Li et al. classified fundus images using data from 

DR1 and MESSIDOR. The amount of data for each dataset is 1,014 and 1,200 images. There are three steps 

for transfer learning, fine-tuning all layers on pre-trained CNN models according to their functions,  

fine-tuning pre-trained CNN models on additional layers, then feature extraction and classification  

using SVM. 

 
 

  
(a) (b) 

 

Figure 2. Neovascularization in fundus patch; (a) NVE, (b) NVD [12] 
 

 

The experiment uses several models, AlexNet, googleNet, and VGG. The parameters used were 

maximum epoch 30, minibatch size 50, learning rates 0.1 to 0.0001, weights 0.0005 and momentum 0.95. 

Optimization using stochastic gradient descent with momentum (SGDM) algorithm. The test results showed 

the best accuracy is the modified VGG-m model of 95.49% for the DR1 dataset and GoogleNet modification 

of 79.37% for the MESSIDOR dataset [13]. 
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Choi et al. [14] classified 10 classes of diabetic retinopathy (DR). Data consists of 10,000 images.  

Each category has 1,000 images. The model used for transfer learning is VGG19 and AlexNet.  

The optimization algorithm uses SGDM, momentum 0.9 learning rate 10-6, and max epoch 50. The test 

scenario is varied, with 3 and 5 classes. The test results showed the best accuracy is VGG19 for classification 

of three categories at 80.8%, while classification of 5 categories showed the highest accuracy of 59.1% [14]. 

Masood et al. classified 4 DR classed as mild, moderate, severe non-proliferative diabetic retinopathy 

(NPDR), and PDR. The dataset is taken from eyePacs. The steps for training learning are preprocessing and 

retraining Inception-V3. Result shows 48.2% for accuracy [15].  

Oktalora et al. [16] classify for exudate. Exudate is a symptom in the form of a yellow spot, irregular 

shape, arising from lipid infiltration in the retina. Exudate is a symptom of diabetic retinopathy. This study 

uses a LeNet model with seven layers. Experiment data using Optha dataset. The size of data is 48x48 pixels. 

The classification consists of two categories: normal and exudate [16]. Sadek et al. build transfer learning to 

classify 3 categories include normal, exudates, and drusen. The dataset uses are STARE, HRF, DrisonDB, 

Optha, HEIMED and MESSIDOR dataset. Transfer learning uses modified VGG, GoogleNet and ResNet 

models. Result shows average accuracy from 91.23% to 92% [17].  

The above studies have not reached the optimal accuracy. Characteristics of diabetic retinopathy 

(DR) disease have not been fully classified. The characteristics of DR are microaneurysm, hemorrhages, 

exudates, cotton wool spots, and neovascularization. The novelty of this study is classification of fundus 

images to distinguish normal and neovascularization using transfer learning. Besides, novelty is also found  

in CNN modification technique by utilizing the last three layers of each model. The results of measurement 

accuracy from transfer learning are compared in the optimization of gradient descent such as stochastic 

gradient descent with momentum (SGDM), root mean square propagation (RMSProp), and adaptive moment 

optimization (Adam). 

 

 

2. RESEARCH METHOD 

The experiment data consists of 2 classes include normal and neovascularization. Each class has  

50 patches, so the total data is 100 patches. It is taken from the MESSIDOR [18] and retina image  

bank [12]. The pre-trained network is a CNN model. CNN is the same as the other neural networks, 

consisting of weight, bias and activation functions. CNN has 2 big parts of the layer, layer for feature 

extraction and layer for classification. The layer for feature extraction consists of a convolutional layer, 

pooling layer, stride, and padding. While layer for classification consists of fully connected layer, softmax, 

and output layer [19]. Pre-trained network becomes a part of transfer learning. Phase of transfer learning is 

import pre-trained network, replace classification layer, train network on the fundus image data, and get 

performance measure of accuracy. 

 

2.1.  Import pre-trained network 

We use AlexNet [19], VGG16, VGG19 [20], ResNet50, ResNet101 [21], GoogleNet [22], 

Inception-V3 [23], Inception_ResNetV2 [24], and Squeezenet [25] as pre-trained network. The pre-trained 

network has trained in ImageNet competition. It has more than a million images and 20,000 classes [26]. 

Each pre-trained network has a different layer configuration. The layer at the beginning and middle called  

a feature extraction layer. These layers produce simple features such as brightness and edges, to complex 

unique features such as colors and shapes. The results of feature extraction layer at source domain can  

be transferred for feature extraction layer at target domain. Feature extraction learning on target domains also 

knows training fundus data images. Figure 3 shows a proposed framework of transfer learning for fundus 

image classification. 

 

 

 
 

Figure 3. The proposed framework of transfer learning for fundus image classification 



TELKOMNIKA Telecommun Comput El Control   

 

Transfer learning with multiple pre-trained network for fundus classification (Wahyudi Setiawan) 

1385 

2.2.  Replace classification layer 

The classification layer is known as 3 final layers i.e fully connected layer, softmax, and an output 

layer. It replaced by a pre-trained network and substitutes with new classification layer that matched with  

a new classification task. It includes new number of classes and a set learning rate in the new network.  

There are exceptions for squeezenet, a layer that must be replaced consists of five layers. Table 1 shows  

the classification layer that replaces the network. 

 

 

Table 1. Classification layer of the pre-trained network 
Pre-Trained Network Classification Layer 

AlexNet fc8, prob, output 

VGG16 fc8, prob, output 

VGG19 fc8, prob, output 

ResNet50 fc1000, fc1000_softmax, classificationlayer_fc1000 

ResNet101 fc1000, prob, classificationlayer_predictions 

GoogleNet loss3-classifier, prob, output 

Inception-V3 predictions, predictions_softmax, classificationlayer_predictions 

Inception-ResNetV2 predictions, predictions_softmax, classificationlayer_predictions 

Squeezenet conv10, relu_conv10, pool10, prob, classificationlayer_predictions 

 

 

2.3.  Train network on fundus image 

Data is processed with research method as shown in Figure 3. It is a phase of transfer learning with 

a pre-trained network for classification of fundus images. At the top, source domains are pre-trained 

networks that have classified data on ImageNet. The train network also needs an optimization algorithm. We 

use an optimization gradient descent algorithm. Gradient descent (GD) obtain optimal parameter weights, 

reduce prediction errors and improve predictions of accuracy. GD performs parameter optimization on  

the network. Besides, GD has a linear complexity of data increment. GD can be computed in parallel by 

utilizing a graphical processing unit (GPU). The application of GD on the CNN model proves that GD can do 

training with millions of data [27].  

 

2.4.  Gradient descent with momentum 

Momentum is a method for GD acceleration by utilizing gradient information in the previous 

steps. Accumulation of gradients is useful for controlling oscillatory effects. Furthermore, it is expected that 

the optimization path can be more stable [28]. 

Algorithm 1. (Gradient descent with momentum) 
1.  𝑚0 = 0 

2.    𝑔𝑡 ∶=  ∇𝜃𝑡−1
 𝐿 (𝜃𝑡−1) 

3.  𝑚𝑡 ≔  𝑔𝑡  +  𝛽𝑚𝑡−1 

4.   𝜃𝑡 ∶=  𝜃𝑡−1 −  𝛼 𝑚𝑡 

with 𝑔𝑡 = gradient loos function to 𝜃𝑡−1, 𝜃𝑡 = next parameter, 𝛼 = learning rate.  

The constant controls the size of the contribution from the previous gradient. Generally, set to 0.9 

is the best value of the experiment that has been carried out. If set to 0, then the GDM results are the same as 

GD. Stochastic gradient descent with momentum (SGDM) is a variant of GDM. The difference is data 

access. If in GDM the data is processed all the data at the same time. Data on SGDM will be processed 

suitably with minibatch size [27]. 

 

2.4.1. AdaGrad and RMSProp 

Adaptive subgradient descent (AdaGrad) [29] get GD improvements by providing different update 

speeds for each vector dimension. The AdaGrad algorithm is found in algorithm 2 [28]. Constants provide 

information about changing the value of an element in the gradient vector. If the value in a certain dimension 

decreases, the update speed in certain dimensions increases and vice versa. This will balance the contribution 

of each dimension of the gradient vector so that the optimization path becomes more stable  

Algorithm 2. (AdaGrad) 
1.  𝑛0 = 0 

2.  𝑔𝑡 ∶=  ∇𝜃𝑡−1
 𝐿 (𝜃𝑡−1) 

3.  𝑛𝑡 ≔  𝑔𝑡
2  + 𝑛𝑡−1 

4.   𝜃𝑡 ∶=  𝜃𝑡−1 −  𝛼 
𝑔𝑡

√𝑛𝑡+ 𝜀
 

with 𝑛𝑡 = adaptive subgradient, 𝜀 =a constant 1e-6 

The problem with AdaGrad is the value can be very large at certain time. It will slow down  

the optimization process time. The solution to these problems is to modify by adding constants. These 
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constants are used to set variable quantities. The root means square propagation (RMSProp) algorithm is 

found in algorithm 3 [28, 30]. 

Algorithm 3. (RMSProp) 
1.  𝑛0 = 0 

2.  𝑔𝑡 ∶=  ∇𝜃𝑡−1
 𝐿 (𝜃𝑡−1) 

3.  𝑛𝑡 ≔  (1 − 𝛾)𝑔𝑡
2  + 𝛾𝑛𝑡−1 

4.   𝜃𝑡 ∶=  𝜃𝑡−1 −  𝛼 
𝑔𝑡

√𝑛𝑡+ 𝜀
 

with 𝛾 = koefisien decay rate 0,95 

 

2.4.2. Adaptive moment optimization (Adam) 

Adam algorithm combines the two approaches to improve GD, momentum and adaptive 

subgradient. This algorithm combines GDM with RMSProp. Adam's algorithm is shown in algorithm 4 [28]. 

Line 4 is an element of momentum, line 6 is an adaptive subgradient element. Adam has a correction bias 

technique with a better approximation [31]. 

Algorithm 4. Adam 
1.  𝑛0 = 0 

2.  𝑔𝑡 ∶=  ∇𝜃𝑡−1
 𝐿 (𝜃𝑡−1) 

3. 𝑚𝑡 ≔ (1 − 𝛽)𝑔𝑡  + 𝛽𝑚𝑡−1  

4.  �̂�𝑡 ∶=  
𝑚𝑡

1− 𝛽𝑡
 

5.  𝑛𝑡 ≔  (1 − 𝛾)𝑔𝑡
2  + 𝛾𝑛𝑡−1 

6. �̂�𝑡 ∶=  
𝑛𝑡

1− 𝛾𝑡
   

7. 𝜃𝑡 ∶=  𝜃𝑡−1 −  𝛼 
𝑚�̂�

√𝑛�̂�+ 𝜀
 

𝑚𝑡 = momentum, 𝑛𝑡 = adaptive subgradient, �̂�𝑡 = momentum estimation with corrected bias at time t, 

 �̂�𝑡 = = adaptive subgradient estimation with corrected bias at time t. 

 

 

3. RESULT AND DISCUSSION 

The experiment includes the following scenarios: 

- Data divide two parts, 70% for training and 30% for testing. Total data is 100 patches, 70 patches  

for training and 30 patches for testing 

- Training phase. Make sure the image size at the training and validation suitable with a pre-trained model. 

If it is not yet sized, then resize the image. Another alternative is to get an augmentation image  

to automatically suitable with the image input size. 

- The training parameters are set as follows: learning rate 1e-4, minibatch size 4, max epoch 5,  

validation frequency 3. 

The results of an experiment are shown in Tables 2, 3, and 4. Table 3 shows validation using SGDM 

algorithm produces the best accuracy up to 100% using VGG16 with a time of 16,572 seconds. In Table 4, 

validation with RMSProp produces the best accuracy value of up to 93.3% with a time of 164.38 seconds. 

Pre-trained Network used is Resnet50. Table 5 shows that validation using Adam algorithm produces best 

accuracy of 96.7%. The experiment using Alexnet with a processing time of 36,274 seconds.  

The initialization of learning rate, minibatch size, max epoch, validation frequency, and gradient 

descent optimization algorithm are factors that influence results of validation accuracy and processing time. 

Learning rate can be initialized starting from big value until it gradually shrinks. Learning rate is between  

0 and 1. If learning rate too large, it will cause overfitting, while learning rate value is too small which will 

cause a longer processing time. 

 

 

Table 2. Accuracy and time processing  

with SGDM 
Pre-trained Network Accuracy (%) Time (Second) 

Alex Net 93.3 8.9537 

googLeNet 86.7 12.876 

ResNet50 100 49.411 

VGG16 100 16.572 

VGG19 80 18.163 

ResNet101 93.3 126.61 

Inception-V3 96.7 95.715 

InceptionResNetV2 70 352.05 

Squeezenet 96.7 4.0363 
 

Table 3. Accuracy and time processing  

with RMSProp 
Pre-trained Network Accuracy (%) Time (Second) 

AlexNet 83.3 26.957 

googLeNet 90 73.062 

ResNet50 93.3 164.38 

VGG16 53.3 246.06 

VGG19 50 225.00 

ResNet101 93.3 305.7 

Inception-V3 90 230 

InceptionResNetV2 90 530.06 

Squeezenet 53.3 18.896 
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Table 4. Accuracy and time processing with adam 
Pre-trained Network Accuracy (%) Time (Second) 

AlexNet 96.7 36.274 

googLeNet 93.3 64.961 

ResNet50 90 149.93 

VGG16 50 126.31 

VGG19 50 388.24 

ResNet101 86.7 196.91 

Inception-V3 86.7 252.1 

InceptionResNetV2 93.3 448.99 

Squeezenet 96.7 44.925 

 

 

Table 5. Result comparison with the previous study  
Author Class Pre-trained Network Accuracy (%) 

Tennakoon et al. [11] 2 AlexNet 98.27 

Li et al. [13] 2 VGGm, GoogleNet 
95.49 

79.39 

Choi et al. [14] 
3 VGG19 80.8 

5 VGG19 59.1 

Masood et al. [15] 4 Inception V3 48.2 

Sadek et al. [17] 3 VGG, GoogleNet, ResNet 91.23-92 

Proposed Method 2 

AlexNet 96.7 

GoogLeNet 93.3 

ResNet50 100 

VGG16 100 

VGG19 80 

ResNet101 93.3 

Inception-V3 96.7 

InceptionResNetV2 93.3 

Squeezenet 96.7 

 

 

Minibatch size will affect memory usage during processing. Smaller minibatch size requires less 

memory when processing. Generally, minibatch size is 2n. Max epoch value is maximum value that can  

be done to process one feedforward on CNN. Iteration stops when an error is constant or when max epoch  

is reached. Validation frequency is value given for the number of validation frequency. These values can  

be varied to obtain optimal accuracy and minimal processing time. Table 5 shows comparison between the 

methods in this article with previous studies. In this article, transfer learning was done with multiple pre-

trained networks include multiple pre-trained networks. The results showed validation of up to 100% 

accuracy using ResNet50 and VGG16. 

 

 

4. CONCLUSION 

Transfer learning using multiple pre-trained networks has been made to determine the category  

of fundus images including normal and neovascularization. It is used 100 patches taken from MESSIDOR 

and Retina Image Bank. Transfer learning can be used as an option to increase validation accuracy.  

The experiment result shows the best classification is found in transfer learning using pre-trained network 

VGG16 with validation accuracy up to 100% and time processing 16,572 seconds. For further research,  

we can use own CNN model. The amount of data and number of classes need to be enlarged for validation 

reliability of CNN model. 
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