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 The usage of BaSO4 nanoparticles on WLEDs luminous flux and color 

uniformity improvements have been analyzed and demonstrated in this 

manuscript. The mixture of BaSO4 and silicone placed on the yellow phosphor 

layer benefits the internal light scattering and thus enhances the angular 

correlated color temperature (CCT) homogeneity. Specifically, the blue-light 

intensity at large angles tend to increase and results in light intensity 

discrepancy, which can be corrected with added BaSO4. In addition to this, the 

BaSO4-silicone composite modifies the refractive index of the air-phosphor 

layer interface to an appropriate value, and thus, the luminous efficiency 

increases. The results show that the CCT deviations is reduced by 580 K, from 

1000 K to 420 K, within the angle range from -700 to +700 with BaSO4 in the 

phosphor structure. The increase in luminous flux is also recorded by 2.25%, 

in comparison with that of the non-BaSO4 traditional structure, at the 120-mA 

driving current. Hence, integrating BaSO4 nanoparticles into the remote 

phosphor structure can contributes to the enhancement of both lumen output 

and CCT uniformity. 
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1. INTRODUCTION  

High-power white light-emitting diodes (WLEDs) have been proposed as a potential lighting source 

for solid-state lighting (SSL) devices, which could replace the traditional one [1, 2]. Several techniques to 

manufacture WLEDs have been applied, yet the most popular one is dispersing yellow Y3Al5O12 (YAG) 

phosphor on the blue LED chip. The LEDs fabricated by this method is called phosphor-converted white  

light-emitting diodes (pc-LEDs) [3-5]. The pc-LEDs can offer a high lighting efficiency and also a cost-saving 

production process, but they have not yielded good color uniformity and high light extraction at the  

air-phosphor layer interface. Meanwhile, enhancing the lumen efficiency of WLEDs by elevating the light 

extraction has been focused and researched extensively in recent studies [6-8]. Thus, researchers have come 

up with many packaging structures, for instances, using a hemi-spherically shaped encapsulation [9] and the 

ELiXIR pc-LEDs structure with internal reflection, to accomplish high light extraction [10]. However, the light 

loss still occurs in these structures, which reduce the overall efficiency of WLEDs [11, 12]. In particular, a 

considerable portion of yellow rays emitted from the yellow phosphor layer are scattered back to the LED chip 

https://creativecommons.org/licenses/by-sa/4.0/
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and finally being absorbed. Researchers figured out that to avoid the backscattering effect, the solution is to 

address the re-absorption issue by providing a sufficient distance between the LED chip and the phosphor layer. 

Therefore, innovative structures were introduced to achieve this purpose, including the ring-remote structure 

and scattered photon extraction (SPE) [13-15].  

According to the findings from previous articles, the remote phosphor structure is proved to have 

superior lumen efficacy to traditional dispersing design. However, throughout the duration of fabricating the 

remote phosphor structure, there is a problem related to the surface of the concave encapsulant, which is the 

phosphor thickness inhomogeneity [16-18]. Additionally, the angular-dependent blue light paths of this 

packaging design usually cause a non-uniform excitation, leading to the yellow ring phenomenon. Thus, we 

proposed to apply BaSO4 nanoparticles to the remote packaging design of WLEDs as a solution for this issue. 

The purpose of using BaSO4 material is to take advantage of its superior scattering ability to enhance the blue 

light intensity at large angles, from which the angular color correlated temperature (CCT) homogeneity is 

elevated [19-22]. In addition to this, the refractive index at the interface of the air and phosphor film is adjusted 

with the addition of BaSO4, and thus, the luminous efficiency is also enhanced. 

 

 

2. EXPERIMENT 

The schematic diagrams of WLEDs are illustrated in Figure 1. The process of producing conventional 

remote phosphor structure is comprised of 3 main steps. Firstly, the blue LED chips are attached to the lead 

frame. Secondly, the transparent silicone glue is dispensed into the lead frame and cured at the temperature of 

150 0C within an hour. Thirdly, a slurry of phosphor suspension is created by the blending the phosphor powers, 

silicone binding agent, and alkyl-based solvent together. In addition, according to previous studied, the 

uniformity of the phosphor slurry can be improved by using the pulse spray coating method with an interval 

control. Afterwards, this slurry is placed onto the silicone surface to complete the remote structure which is 

presented in Figure 1 (a). The blue LED chips used in the experimented model are the 24-mile-square ones 

whose emission wavelengths peak at 450 nm. Additionally, each bare LED chip has 95 mW radiant flux at 120 

mA driving current. The yellow phosphor Y3Al5O12 (YAG) particle has a size of 12 µm. 

The process of fabricating remote phosphor structure with BaSO4 is similar to the traditional one, but 

BaSO4 is used instead of the yellow phosphor to combine with the other two materials. The simulated of BaSO4 

remote phosphor packaging is shown in Figure 1 (b). Moreover, the BaSO4 is added with the concentration of 

5%. The input parameters of the LED chips in this structure is the same as those in the conventional one. 

Through the cross-sectional scanning electron microscopic (SEM) image, we can know that the particle size 

of BaSO4 in the silicone encapsulant is approximately 300 nm. Besides, the energy dispersive spectrometer 

(EDS) is utilized to analyze the components of the encapsulant containing BaSO4 and silicone. 

 

 

  
(a) (b) 

 

Figure 1. (a) Photograph of WLEDs sample, (b) The simulated WLEDs model 

 

 

3. RESULTS AND DISCUSSION 

The general definition of the angular-dependent CCT homogeneity can be demonstrated as the 

following equation [23-25]:  

 

Angular-dependent CCT uniformity = Max CCT – Min CCT 

 

Figure 2 shows the changes of CCT deviations in connection with different particles weight of BaSO4.  As can 

be seen, the deviation of CCT reaches its lowest level when the weight of BaSO4 is 10 mg cm-2. The results 
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present that this is the optimal weight for BaSO4 to be applied as the CCT uniformity can be improved by 58%, 

or in other words, the CCT deviations reduce from 1000 K to 420 K in the angles from -700 to 700, in 

comparison with that of the traditional structure. In the traditional packaging structure, the extraction of blue 

lights at large angles is inferior as they are trapped and reflected within the phosphor layer, and this 

phenomenon results in the inhomogeneous color mixing of blue and yellow rays. On the other hand, when 

added BaSO4 the scattering events are improved, leading to a more uniform distribution of the blue and yellow 

lights. When the weight of BaSO4 is more than 10 mg cm-2, the CCT deviations are also affected. However, 

the structure with >10 mg cm-2 still performs better than the conventional design.  

In addition, the experiment outcomes indicate that the 10 mg cm-2 BaSO4 yields better luminous 

efficiency, as presented in Figure 3. At the driving current of 120 mA, the BaSO4 structure can achieve 2.25% 

enhancement in luminous efficiency. Furthermore, the refractive index variation at the air-encapsulant interface 

is degraded, which probably increases the light extraction efficiency. As the BaSO4-silicone film has the 

refractive index of 1.5, and the phosphor-silicone’s is 1.8, the BaSO4 will results in a sufficient gradient 

between air and the encapsulant layer. 

 

 

 

 

Figure 2. CCT deviations of BaSO4 particles with different diameters 

 

 

 
 

Figure 3. Luminous fluxes of BaSO4 particles with different diameters 

 
 

To investigate more about BaSO4 scattering ability in the visible range, the haze intensity is calculated 

by the two parameters: the total transmittance and the diffractive transmittance (non-specular transmittance), 

which can be expressed as [26]: 

 

Haze intensity = Tdiffraction/Ttotal x 100% 

 

The diffractive and total transmittances are presented by Tdiffraction and Ttotal, respectively. Additionally, it is 

noted that the diffractive transmittance does not include the zero-order diffraction. The computed results 

demonstrated that the haze intensity of the non-BaSO4 silicone layer stays at a low level which is around 0%. 

However, this parameter shows an upward trend when BaSO4 appears in the silicone film, and tends to develop 

along with the increase in BaSO4 particle weight. Moreover, the scattering is likely to be stronger as the haze 
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intensity is higher. Besides, the better the scattering ability is, the more uniform the angular CCT becomes. 

Thus, BaSO4 is a solution for the inhomogeneous CCT problem. 

The changes of blue and yellow light scattering intensities in the normal direction with various BaSO4 

diameters are analyzed by using the full-field finite-difference time-domain (FDTD) simulation for the 

illustration of the impacts of BaSO4 particle sizes on angular-dependent CCT and lumen efficacy. Given that 

BaSO4-silicon layer’s refractive index is 1.5, and BaSO4 concentration is 5%, 400 nm turns out to be the most 

effective diameter of BaSO4 as it can accomplish higher angular-dependent scattering intensity in the blue and 

yellow light (450 nm and 560 nm, respectively), compared to results of the other sizes. Though the color 

uniformity is obviously enhanced with the improvement in the light scattering, the blue and yellow light 

transmittance show some disadvantages. One of them is the increased absorption as the thickness of the BaSO4-

silicone layer grows, which will decrease the luminous performance. With BaSO4 diameter at 300 nm, the 

absorbed light can make up 5-15% of the total amount, and this number tends to increase if the size of BaSO4 

becomes larger. Thus, the light absorption must be considered together with the light scattering when choosing 

the appropriate diameter for BaSO4 nanoparticle so that WLED devices can achieve better CCT uniformity and 

light output power. 

The influence that BaSO4 has on the emission of the structure is investigated by the measurements of 

blue and yellow light angular-dependent relative intensity. It is reported that in BaSO4 remote structure, the 

variety of blue light angles increases while the normal-direction blue light decreases in comparison to the 

conventional one. This implies the strong impacts of BaSO4 scattering property on the light path of the blue 

photons that cause the increase of CCT deviation. Meanwhile, the light distribution of yellow rays in BaSO4 

remote phosphor structure is nearly the same as that in the conventional package. This phenomenon can be 

explained by the wavelength-dependent haze ratio of 10 mg cm-2 BaSO4 layer: its haze for yellow light with 

wavelength at about 600 nm is 30%, while for the ~ 450 nm blue rays is 35%. The higher haze percent results 

in the strong light scattered. Therefore, it can be said that the yellow-light scattering events are less than the 

blue-light ones, contributing to the lower CCT deviation as the blue and yellow lights are mixed more 

uniformly. Additionally, the haze measurement exhibits that the diffused component of 600 nm yellow light is 

half that of the 450 nm blue ray. Concluded from these findings, the CCT deviation has a close connection with 

the blue-light angle variations. Moreover, the blue-light relative intensity that is dependent on BaSO4 weight 

was studied at the angle of 700. The results reveal that 10 mg cm-2 BaSO4 is the most advantageous condition 

for the enhancement of WLEDs CCT uniformity as it exhibits the highest blue-light intensity at large angles. 

 

 

4. CONCLUSION  

The enhancement in CCT homogeneity and light output with the addition of BaSO4 in the silicone 

layer is reported in this article. In particular, BaSO4-silicone layer can get 58% improvement of CCT uniformity 

in comparison with the conventional design. Moreover, the presence of BaSO4 helps to increase the lumen 

output by 2.25% at the driving current of 120 mA. The scattering effect of BaSO4 is also analyzed through the 

haze intensity measurement. The outcomes reveal that the remote structure with 10 mg cm-2 BaSO4 can achieve 

the lowest angular CCT deviation level. In addition to this, the yellow ring phenomenon is likely eliminated 

without sacrifying the lighting output. Hence, manufacturers can use 10 mg cm-2 BaSO4 in the remote phosphor 

structure to accomplish high-quality WLED generation. 

 

 

REFERENCES  
[1] H. S. E. Ghoroury, et al., "Color temperature tunable white light based on monolithic color-tunable light emitting 

diodes," Opt. Express, vol. 28, pp. 1206-1215, 2020. 

[2] H. Lee, et al., "Phosphor-in-glass with Nd-doped glass for a white LED with a wide color gamut," Opt. Lett, vol. 43, 

pp. 627-630, 2018. 

[3] Y. Tang, et al., "Enhancement of luminous efficacy for LED lamps by introducing polyacrylonitrile electrospinning 

nanofiber film," Opt. Express, vol. 26, no. 21, pp. 27716-27725, 2018. 

[4] W. Gao, et al., "Color temperature tunable phosphor-coated white LEDs with excellent photometric and colorimetric 

performances," Opt. Express, vol. 57, pp. 9322-9327, 2018. 

[5] S. K. Abeysekera, et al., "Impact of circadian tuning on the illuminance and color uniformity of a multichannel 

luminaire with spatially optimized LED placement," Opt. Express, vol. 28, no. 1, pp. 130-145, 2020. 

[6] L. Xiao, et al., "Spectral optimization of phosphor-coated white LED for road lighting based on the mesopic limited 

luminous efficacy and IES color fidelity index," Appl. Opt, vol. 57, no. 4, pp. 931-936, 2018. 

[7] L. Yang, et al., "Thermally stable lead-free phosphor in glass enhancement performance of light emitting diodes 

application," Appl. Opt, vol. 58, no. 15, pp. 4099-4104, May 2019. 

[8] L. Duan, et al., "Wide color gamut display with white and emerald backlighting," Appl. Opt, vol. 57, pp. 1338-1344, 

2018. 



TELKOMNIKA Telecommun Comput El Control   

 

Effects of BaSO4 nano-particles on the enhancement of the optical performance of…  (Huu Phuc Dang) 

607 

[9] S. Bindai, et al., "Realization of phosphor-in-glass thin film on soda-lime silicate glass with low sintering temperature 

for high color rendering white LEDs," Appl. Opt, vol. 58, pp. 2372-2381, 2019. 

[10] H. P. Huang, et al., "White appearance of a tablet display under different ambient lighting conditions," Opt. Express, 

vol. 26, no. 4, pp. 5018-5030, 2018. 

[11] A. Zhang, et al., "Tunable white light emission of a large area film-forming macromolecular complex with a high 

color rendering index," Opt. Mater. Express, vol. 8, no. 12, pp. 3635-3652, Dec. 2018. 

[12] W. Wang, et al., "Red photoluminescent Eu3+-doped Y2O3 nanospheres for LED-phosphor applications: Synthesis 

and characterization," Opt. Express, vol. 26, no. 26, pp. 34820-34829, 2018. 

[13] T. Han, et al., "Spectral broadening of a single Ce3+-doped garnet by chemical unit cosubstitution for near ultraviolet 

LED," Opt. Mater. Express, vol. 8, pp. 3761-3769, 2018. 

[14] A. Ullah, et al., "Household light source for potent photo-dynamic antimicrobial effect and wound healing in an 

infective animal model," Biomed. Opt. Express, vol. 9, no. 3, pp. 1006-1019, Mar. 2018. 

[15] H. Gu, et al., "Design of two-dimensional diffractive optical elements for beam shaping of multicolor light-emitting 

diodes," Appl. Opt, vol. 57, pp. 2653-2658, 2018. 

[16] Z. Li, et al., "Effect of flip-chip height on the optical performance of conformal white-light-emitting diodes," Opt. 

Lett, vol. 43, pp. 1015-1018, 2018. 

[17] L. Qin, et al., "Luminance calculation method accounting for mesopic vision and fog penetration ability," Appl. Opt, 

vol. 59, pp. 683-686, 2020. 

[18] G. Tan, et al., "High dynamic range liquid crystal displays with a mini-LED backlight," Opt. Express, vol. 26, pp. 

16572-16584, 2018. 

[19] B. Jain, et al., "High performance electron blocking layer-free InGaN/GaN nanowire white-light-emitting diodes," 

Opt. Express, vol. 28, pp. 665-675, 2020. 

[20] L. Wu, et al., "Hybrid warm-white organic light-emitting device based on tandem structure," Opt. Express, vol. 26, 

pp. A996-A1006, 2018. 

[21] A. Ferrero, et al., "Index for the evaluation of the general photometric performance of photometers," Opt. Express, 

vol. 26, pp. 18633-18643, 2018. 

[22] C. Zhang, et al., "All-inorganic silicon white light-emitting device with an external quantum efficiency of 1.0%," 

Opt. Express, vol. 28, pp. 194-204, 2020. 

[23] Y. J. Park, et al., "Development of high luminous efficacy red-emitting phosphor-in-glass for high-power LED 

lighting systems using our original low Tg and Ts glass," Opt. Lett, vol. 44, pp. 6057-6060, 2019. 

[24] H. Yuce, et al., "Phosphor-based white LED by various glassy particles: control over luminous efficiency," Opt. Lett, 

vol. 44, no.3, pp. 479-482, 2019. 

[25] P. Kumar, et al., "Enhanced exclusive-OR and quick response code-based image encryption through incoherent 

illumination," Appl. Opt, vol. 58, pp. 1408-1412, 2019. 

[26] G. Xia, et al., "Comparison of MAP method with classical methods for bandpass correction of white LED spectra," 

Journal of the Opticcal Society of America A, vol. 36, no. 5, pp. 751-758, 2019. 

 

 


