
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 21, No. 1, February 2023, pp. 49~59

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v21i1.23468  49

Journal homepage: http://telkomnika.uad.ac.id

Performance evaluation of software-defined networking

controllers in wired and wireless networks

Salar Jamal Rashid1,2, Ahmed Maamoon Alkababji2, Abdul Sattar Mohammed Khidhir3
1Department of Technical Training, Computer Center, Northern Technical University, Mosul, Iraq

2Department of Computer Engineering, College of Engineering, Mosul University, Mosul, Iraq
3Department of Computer Systems, Mosul Technical Institute, Northern Technical University, Mosul, Iraq

Article Info ABSTRACT

Article history:

Received Feb 28, 2022

Revised Oct 27, 2022

Accepted Nov 06, 2022

 Traditional networking solutions are unable to meet modern computing

needs due to the expanding popularity of the internet, which requires

increased agility and flexibility. To meet these objectives, software-defined

networking (SDN) arises. A controller is a major element that will determine

if SDN succeeds or fails. Various current SDN controllers in many sectors

must be evaluated and compared. The performance of two well-known SDN

controllers, POX and Ryu, is evaluated in this research. We used the

Mininet-WiFi emulator to implement our work and the distributed internet

traffic generator (D-ITG) to assess the aforementioned controllers using

delay, jitter, packet loss, and throughput metrics. What is new in our

research is the study of network performance in two different types of

transmission media: wired and wireless. The speed of the wired medium was

chosen to be fast ethernet, which was not previously studied. In addition, the

size of the packet was varied among 128, 256, 512, and 1,024 bytes.

The comparison was performed on three topologies (single, linear, and tree).

The experimental results showed that Ryu offers significantly lower latency,

jitter, and packet loss than POX in most scenarios. Also, the Ryu controller

has higher throughput than POX, especially on wireless networks.

Keywords:

Bitrate

Delay

Jitter

Mininet-WiFi

POX

Ryu

SDN

This is an open access article under the CC BY-SA license.

Corresponding Author:

Salar Jamal Rashid

Department of Technical Training, Computer Center, Northern Technical University

Mosul, Iraq

Email: salar.jamal@ntu.edu.iq

1. INTRODUCTION

It’s becoming more common for data-forwarding devices, such as routers and switches, to be full of

control needs and rules, which has caused a lot of people to worry about the current hardware-based network

infrastructure. This problem derives from the reality that traditional networks have become not only

excessively complicated to install and run properly, but also resistive to new service revolution. The control

planes, which serve like the brains of networks, and the data planes, which handle the forwarding of data, are

both tightly located within these proprietary and heterogeneous forwarding devices in a typical network [1], [2].

The control plane is in charge of configuring the node and programming the paths that will be used

for flowing data. Once these pathways have been defined, they are transported down to the data plane, where

this control information is used to decide data plane forwarding at the hardware level. Because there is no

control plane abstraction of the entire network in the typical network system, a distributed technique of

network management is used to manage the network. As a result, networks have gotten more complex and

difficult to manage and configure when something goes wrong. The software-defined networking (SDN) idea

has been presented as a solution to the difficulties [3]-[5].

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 49-59

50

SDN is a novel network paradigm that allows existing networks’ control and data plane functions to

be separated. The SDN architecture allows for centrally controlled capabilities as well as a global view of the

entire underlying physical network, making network management much easier. This centralized entity

provides programmable control of the whole network and enables real-time control of all the underlying

devices [6], [7]. Figure 1 depicts the differences in functionality planes between a legacy and an SDN

network. SDN keeps the data plane logic within the network elements, while the control layer handles flow

control and maintains a global perspective of the network via a centralized controller [8].

Figure 1. Comparison between SDN and traditional network [9]

The controller is at the heart of the SDN network, providing instructions to switches and other

physical layer network devices. This particular controller will be responsible for offering forwarding

decision-making and programmable interfaces, enabling user-written applications to manage the role of

network devices based on a set of high-level rules. These rules are load balancing, switching, firewalling,

routing, and network address translation [10]-[12].

Because the controller serves as the brain in the SDN architecture, the performance of the SDN is

largely calculated by the controller’s performance. Nowadays, there are a plethora of controllers to choose

from, both free and commercial. As a result, a comprehensive evaluation methodology is required to select

the optimum controller for each scenario based on quality of service (QoS) requirements, routing protocols,

workload, and topology, all of which have a significant impact on the controller’s performance [13]. There

are some well-known criteria that can be used to measure the performance of the SDN controller, like delay,

jitter, packet loss, and throughput. In this paper, the last aforementioned performance criteria of POX and

Ryu controllers will be compared in different network topologies and workloads. The SDN controller

connects with the data plane switches via open, standardized interfaces referred to as southbound interface

(SBI) protocols such as OpenFlow.

OpenFlow was introduced by open networking foundation (ONF) in 2008 as the first protocol to

separate the data and control planes [14]. OpenFlow is the most commonly used standardized SBI application

programming interface (API) and follows the basic SDN principle of separation between the data and control

planes. It specifies how the controller should adapt the network and communicate with data plane devices [15].

Traditional switches are vender-specific making it less flexible in managing and programming so it was

being replaced by OpenFlow switches. Each OpenFlow switch keeps a flow table, which is made up of flow

rules that define how network packets are handled [16].

2. LITERATURE REVIEW

The positive impact of SDN on changing traditional network principles has resulted in a number of

works, Islam et al. [17] evaluated the performance of different controllers in wireless networks. They

compared between POX, Ryu, open network operating system (ONOS) and floodlight controllers using

Mininet-WiFi emulator. The evaluation was done on a network of three hosts and three access points

connected in a linear topology. The authors concluded that floodlight performs the best among the four SDN

controllers in terms of jitter and delay. They also showed that Ryu and ONOS displayed the worst

performance in terms of jitter and delay respectively, while the Pythonic network operating system (POX)

exhibits an average performance in all terms.

Numan et al. [18] calculated the latency and jitter of SDN against traditional IoT communication

networks. They showed that the average SDN jitter and latency per packet are three times smaller, which

translate into better efficiency under different traffic conditions. The results showed that SDN improves

network efficiency by reducing network overhead created from frequent communication attempts between

the control and data planes each time a packet is received. It is also recommended that the distributed control

plane architecture be used, although this also has its specific challenges, including how controllers can be

positioned to ensure the best results.

TELKOMNIKA Telecommun Comput El Control 

Performance evaluation of software-defined networking controllers in … (Salar Jamal Rashid)

51

Bhardwaj and Panda [19], the performance of the Ryu controller in a wired network was analyzed.

The authors used Ping and iPerf tools to calculate the roundtrip time and throughput of a single topology

made of four hosts. Their proposed work evaluated various node-to-node performances under transmission

control protocol (TCP) and user datagram protocol (UDP) protocols. They came to the conclusion that the

RYU SDN controller is one of the most powerful controller for traffic engineering.

Kumar and Sood [20], compared the characteristics of traditional networks and SDN. They analyzed

the performance of POX controller in four topologies (reserved, single, linear and tree) based on delay,

throughput, and packet loss. They used Wireshark for measuring performance metrics. They concluded that

the linear topology is best in term of throughput and delay while the tree topology is the worst.

On the other hand, Babbar and Rani [21] evaluated the performance of Ryu in tree topology of two

depth and three fanout (i.e. 9 hosts and 4 switches). They summarized the performance of Ryu using different

criteria such as delay, bandwidth, jitter, and packet loss. They used different measurement tools, including

Ping, iPerf, and Wireshark. They also advised that the work can be further extended to different network

topologies like a single, linear, and ring using the different SDN controllers.

Mamushiane and Shozi [22] provided a comparison of ONOS and OpenDaylight (ODL) controllers

in different network topologies. They analyzed the performance of these controllers in single, linear, and tree

topologies. The comparison was made based on the distributed internet traffic generator (D-ITG) tool. They

showed that ODL was drastically poor while the ONOS controller displayed the best performance for all

metrics and scenarios.

Lastly, Salih [23] evaluated the performance of the Ryu controller in a wired network. The author

used Cbench and Wireshark tools to calculate the latency and throughput of a linear topology with variable

number of switches (2, 4, 8, 16, 32, and 64). He also advised that the work can be extended to measure

different performance metrics like a jitter, packet drop and round-trip time. Our research will compare the

performance of Ryu and POX controllers in different topologies with varying workloads in both wired and

wireless networks.

3. THEORETICAL BACKGROUND

3.1. Software-defined networking (SDN)

The SDN architecture has a number of advantages over traditional network architectures, including

traffic engineering policy change, programmability, a centralized view of the network, and high efficiency [24].

At present, SDN is viewed as a tool for delivering a dynamic and scalable architecture, which is the method

to significantly improve future networks. With the help of SDN, network orchestration, and network

virtualization, network architects will be able to create a really innovative and smarter network solution that

is more efficient and cost effective [25].

Due to its specific architecture, SDN is not dependent on any proprietary software or hardware.

It provides centralized control, programmability of the network, less capital cost, less operational cost, less

agility, higher flexibility, easy customization and neutrality. Due to its popularity and scope in the field of

networking, it is being adopted by academia and giant IT organizations [27]. Also, network modification is

less error-prone and easier to carry out. The process of designing network servers, services, and applications is

simplified, and high-level rules may be maintained by dynamically reacting to changes in the network state [15].

The architecture of the SDN network can be divided into three layers: the application layer, control layer, and

infrastructure (data) layer. The relationships between SDN modules can be seen in Figure 2, which shows a basic

overview of a typical SDN architecture.

a) Application layer: this layer contains a range of programs that belong to various users. It includes

network features and applications that are routinely used by enterprises, such as load balancing,

firewalls, and security systems [28].

b) Control layer: the main component of the SDN design is a logically centralized controller, which is

present at this layer. This layer’s job is to regulate the general behavior of network devices. It has

comprehensive knowledge about all of the network’s devices and can issue commands to all of them [29].

The control layer gets instructions from the application layer through Northbound APIs and transmits

them to the data layer. It also gathers information’s (issues, host tracks, and statistics) from the

infrastructure layer and sends them back to the application layer [30].

c) Data layer: it consists of all the networking devices that are concerned with forwarding the packets on

the network. No device in this layer consists of any decision-making logic, but it just performs the actions

on the packets coming to it according to the instructions given by the control layer. Communication

between the control layer and data plane is carried out by the southbound APIs. For communication,

OpenFlow is used [29], [31].

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 49-59

52

Figure 2. Software-defined network architecture [26]

3.2. SDN controllers

Several open-source SDN controllers are being used to deploy network designs, including Ryu, POX,

floodlight, ONOS, ODL, and OpenDaylight [32]. The architecture of the SDN controller is shown in Figure 3.

The diagram displays the modules that offer the controller’s main functionality, both nourthbound interface

(NBI) and SBI, as well as a few applications that may use the controller. To connect with SDN devices, the

southbound API is utilized. In the case of a commercial Open SDN controller, this API is OpenFlow, or an

alternative in other SDN systems [33]. The controller’s primary duties are topology and device tracking and

discovery, statistics, device administration, and flow management. These are all implemented by a set of

modules internal to the controller [8].

Figure 3. SDN controller architecture [34]

The importance of an SDN controller’s role deserves a short description of how it performs their

primary tasks, packet forwarding and routing. In SDN environment, when node 𝑋 starts communicating with

node 𝑌, the first switch receives the first flow from host 𝑋 and sends it to its controller if the current flow

table contains no information about host 𝑌. The controller then completes the packet-in based on its

applications and services, encapsulating it to create a packet-out. This, along with all other switches between

the destination and the source, will be sent back to the switch. As a result, each switch flow table will be

filled with the information needed to make the best routing decision [35]. Many SDN controllers have been

developed, and their performance in various environments needs to be compared. Table 1 lists some of the

most well-known SDN controllers, as well as the platforms that they support and the programming languages

that were used to create them [6].

Table 1. SDN controllers comparison
Controller name Programing language Platform support Developer

POX Python Linux, MAC and Windows Nicira network

Ryu Python Linux Nippon telegraph and telephone (NTT)

Floodlight Java Linux, MAC and Windows BigSwitch network
OpenDaylight Java Linux Cisco and OpenDaylight

ONOS Java Linux ONF

TELKOMNIKA Telecommun Comput El Control 

Performance evaluation of software-defined networking controllers in … (Salar Jamal Rashid)

53

3.2.1. POX

POX is a Python-based open-source controller that supports OpenFlow for developing SDN

applications. A POX controller can also convert OpenFlow devices into switches, firewalls, load balancers,

and other network devices. In the presence of the OpenFlow protocol, the POX controller can have straight

access and manipulation capabilities to the forwarding devices. It is fast and very easy which makes it suitable

for research purposes, demonstrations or experimentation. POX is based on a model that recognizes all SDN

network activities and devices as separate components that can be separated and used at any time and in any

location. It is responsible for achieving any type of communication between applications and SDN devices [8].

3.2.2. Ryu

The Ryu controller is an open-source and component-based SDN framework implemented entirely

in Python. RYU term comes from a Japanese word meaning “flow,” which is a Japanese dragon, one of the

water gods. it uses the OpenFlow protocol to associate with the switches to modify how the network will

manage traffic flows and allows an event-driven programming model in which the flow of the program is

established by events. The module called ryu.controller.ofp_event exports event classes that describe

receptions of messages from connected switches. Ryu provides software components with well-defined APIs

that make it simple to create control applications and SDN network management. It can also view the

designed network in the GUI. Ryu provides a group of components such as OpenFlow representaional API

(OFREST), Firewall, OpenStack, and Quantum useful for SDN applications. The objective of these applications

is to gathered network intelligence by using a controller, performed analytics by running algorithms, and then

orchestrated the new rules by using the controller. In addition, Ryu supports various protocols for managing

network infrastructure, such as OF-config, Netconf (RFC 6241), and OpenFlow. The Ryu is fully compatible

with all OpenFlow versions (1.0 to 1.5) [36].

3.3. OpenFlow

OpenFlow is the most widely accepted and deployed SBI standard for SDN, and it is a protocol that

is used to install data processing rules between the controller and forwarding devices. The SDN network is

changed by OpenFlow in the sense that data plane elements are reduced to simple devices that forward

packets according to the controller’s rules. OpenFlow switches are the most important components of a

controller-based OpenFlow network. Each OpenFlow switch keeps a flow table, which is made up of flow

rules (entries) that determine how packets are handled. Pattern fields (which match bits in the packet header),

a list of actions (forward, flood, drop, modify, or send the packet to the controller), a set of counters (for

tracking packets), and a priority field are all included in flow entries. Furthermore, as long as the OpenFlow

enabled switch communicates with an OpenFlow controller, company vendors have a variety of options for

implementing a data plane [8].

Figure 4. Working of SDN [28]

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 49-59

54

When the first packet of a flow is received by an SDN node (implemented using the OpenFlow

protocol), the node queries the controller for the flow’s forward path. The controller then updates the node

firmware with the necessary rules. These rules, as shown in Figure 4, provide details about the activities

required by the packet. The controller’s job is to set up the necessary rules for each node in the forwarding path.

An originating node that does not have a path installed related to the corresponding packet may send a route

request message [28].

The structure of a flow entry in an OpenFlow switch is shown in Figure 5. When a new flow entry is

received at a switch, the search begins. If no match is found, the switch sends a message to the controller

requesting that action be taken on the unmatched flow. There are several possible actions for the flow,

including sending the packet to an outgoing port, returning the packet to the controller, dropping the packet,

and sending the packet to the next flow table or specific tables. The header of almost every new version of

OpenFlow has been expanded to include more matching fields [13].

Figure 5. OpenFlow v1.0 flow-table Fields [32]

4. METHODOLOGY

In this section, the simulation environment will be explained. Also, 3 different network topologies

(single, linear, and tree) will be demonstrated. Lastly, the method for analyzing and comparing four different

attributes (delay, jitter, packet loss, and bitrate) will be described.

4.1. Simulation environment

The test environment described in this section was created using virtualization technology on a

single personal computer (PC) with an Intel® CoreTM i7-7500U 2.70 GHz CPU with 2 cores, 4 logical

processors, and 12 GB of RAM. VMware Workstation Pro installed on the PC, ubuntu was used to create

virtual machine. the virtual machine was created with 1 core, 4 GB of RAM, and 20 GB of storage. The VM

contains Mininet-WiFi emulator with implemented Ryu and POX controllers. Mininet-WiFi is used because it is

open source and provides easy modeling of nodes, links, controllers and all network components. On the other

hand, the reason for selecting Ryu and POX controllers because both controller uses python as the programming

language. Python 3 is used as a scripting language to write the custom network topology.

4.2. Topology

The evaluation procedure comprises building an SDN topology with a Mininet-WiFi emulator and a

number of hosts and switches. Three topologies are used to study their performances. The topologies

adopted, namely; single, linear, and tree for wired and wireless are depicted in Figure 6.

1) Single: in a single topology, only one switch is used, and all the hosts are connected to that switch.

Figure 6(a) and Figure 6(b) show the emulated single network of 8 hosts.

2) Linear: linear topology is similar to bus topology in that each OpenFlow enabled switch is connected in

a straight line. Figure 6(c) and Figure 6(d) depict an emulated linear network with 7 switches and 8 hosts.

3) Tree: two terms define tree topology: depth and fanout. Depth specifies the number of switch levels,

while fanouts reflect the number of output ports to which switches/hosts will connect. Figure 6(e) and

Figure 6(f) depict an emulated tree network with a depth and fanout equal to 2 (7 switches and 8 hosts).

All the nodes have been assigned a unique IP address from the 10.0.0.0/24 address range and a

unique MAC address. The IP/MAC addresses are (10.0.0.1/00:00:00:00:00:01) for node ℎ1,

(10.0.0.8/00:00:00:00:00:08) for node ℎ8. The hosts were placed within a range of 100 m from the OpenFlow

switches and access points. The wired connection was set to fast ethernet while the wireless was chosen to be

802.11g. To make switches/access points connect to Ryu or POX controller, the 127.0.0.1 virtual loopback IP

address was used. The elements that are used to forward traffic from one host to another are switches and

access points that support the OpenFlow v1.0 protocol. The Openflow v1.0 was used because POX controller

support only this version and to make comparison fair.

TELKOMNIKA Telecommun Comput El Control 

Performance evaluation of software-defined networking controllers in … (Salar Jamal Rashid)

55

(a) (b)

(c) (d)

(e) (f)

Figure 6. Network topologies in this research: (a) wired single topology, (b) wireless single topology,

(c) wired linear topology, (d) wireless linear topology, (e) wired tree topology, and (f) wireless tree topology

4.3. Metrics

After the network design was implemented, its performance was tested by computing the main

network’s performance characteristics such as delay, jitter, packet loss, and bitrate using the D-ITG traffic

generator. Following the completion of each topology in Mininet-WiFi, the first and last nodes will be picked

and set using Xterm, a typical terminal emulator. In both trials, host B serves as the server, while host A

serves as the client. To begin the performance analysis, host A is set up with the D-ITG command:

“./ITGSend -T UDP -m rttm -a 10.0.0.8 -c 128 -C 1000000 -t 10000”. While host B is configured with:

“./ITGRecv” command. Table 2 show the parameter of D-ITG command.

Table 2. Parameters of the D-ITG command
Variable Description

-T <protocol> Layer 4 protocol (default: UDP)
-m <meter> Set the type of meter (default: owdm):

- Owdm (one-way delay meter)

- Rttm (round-trip time meter)
-a <dest_address> Set the destination address (default: 127.0.0.1)

-c <pkt_size> Constant (default: 512 bytes)
-C <rate> Constant (default: 1000 pkts/s)

-t <duration> Set the generation duration in ms (default: 10000 ms)

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 49-59

56

All procedures were carried out in two separate test sets for both controllers. The constant rate of the

wired network was set to 106 pks/s, while the constant rate of the wireless network was set to 105 pks/s.

To measure delay, jitter, and packet drop, the UDP protocol was employed. On the other hand, when

measuring bitrate, UDP was replaced by TCP in the D-ITG command. We run tests ten times in each stage

and take the average of the ten results as the final result. Furthermore, we gradually increase the packet size

from 128 to 1,024 by a multiple of 2. Table 3 show the comparison between our research methodology and

the papers reviewed in section 2.

Table 3. Comparison between different methodology
Reference Controller Topology Performance Tools

[17] POX, Ryu, ONOS,

floodlight

Linear Delay, jitter, throughput iPerf, Ping

[18] Mininet controller Single Delay, jitter iPerf, Ping

[19] Ryu Single Delay, throughput iPerf, Ping,

Wireshark

[20] POX Single, linear,

tree

Delay, throughput, packet loss Wireshark

[21] Ryu Tree Delay, jitter, throughput, packet
loss

Wireshark, iPerf,
Ping

[22] ODL, ONOS Single, linear,

tree

Delay, jitter, throughput, packet

loss

D-ITG

[23] Ryu Linear Delay, throughput Cbench, Wireshark

Our
research

POX, Ryu Single, linear,
tree

Delay, jitter, throughput, packet
loss

D-ITG

5. RESULTS

5.1. Average delay

In wired networks, Ryu outperforms POX in the three topologies (especially in linear and tree) as shown

in Figure 7. It also showed that the delay in Ryu increases with increasing the size of the packet, in contrast

with POX where the delay decreasing especially in linear and tree topologies. Figure 8 shows that both

controllers get almost the same performance in wireless networks, with the best result for the packet size of

128 bytes and the worst for 512 bytes. So, in our scenarios SDN work better in small size packet applications.

In addition, tree topology works better than linear in the POX controller.

Figure 7. Average delay in wired network

Figure 8. Average delay in wireless network

TELKOMNIKA Telecommun Comput El Control 

Performance evaluation of software-defined networking controllers in … (Salar Jamal Rashid)

57

5.2. Average jitter

Figure 9 shows that the POX controller has higher jitter, especially when the packet size is small, on the

other hand, Ryu gets lower jitter as the packet size decreases. The jitter in both controllers behave like delay’s

results. In wireless networks, the average jitter is the same in both controllers, as shown in Figure 10. Also,

tree topology works better than linear with POX controller. The packet size of 128 bytes was shown to be

suitable for applications that need less jitter, while 1,024 bytes is the worst.

Figure 9. Average jitter in wired network Figure 10. Average jitter in wireless network

5.3. Dropped packets

For the packet drop, Ryu performs better than POX in all topologies as shown in Figure 11. Also,

tree get better results in POX controller than linear. Figure 12 shows that the worst packet drop is 13% in the

POX with linear topology when the packet size is 1,024 bytes, while it is better in the packet size of 256

bytes with about 4.5% packet drop.

Figure 11. Packet drop in wired network Figure 12. Packet drop in wireless network

5.4. Average bitrate

Figure 13 shows that Ryu and POX get almost the same average bitrate in all scenarios. It can be also

shown that linear topology gets a better bitrate in comparison to the tree in POX scenarios. In wireless scenarios

the average bitrate of Ryu is better than POX and the tree topology gets higher bitrate than linear in both Ryu

and POX controllers as shown in Figure 14, the packet size of 128 Bytes is the worst in wireless network.

Figure 13. Average bitrate in wired network Figure 14. Average bitrate in wireless network

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 1, February 2023: 49-59

58

6. CONCLUSION

In the last few years, there has been a lot of progress in technology. Traffic analysis is one of the

important parts of SDN’s application field. The SDN controller serves as the network’s central processing unit,

analyzing and monitoring real-time data traffic. Monitoring and analyzing real-time data traffic is an important

technique in any networking approach for observing the passage of data packets from the source host to the

destination host. In this study, many comparisons were made. First, the performance of the two most prominent

open source SDN controllers, POX and Ryu, is compared. Second, many topologies were implemented with

comparing linear and tree topologies. Third, various packet sizes were compared, which provides the

researchers with information about the suitable packet sizes in different applications. The D-ITG tool and the

Mininet-WiFi emulator were used to conduct an impartial experimental analysis based on active measurement.

Performance is measured using metrics including delay, jitter, packet loss, and throughput. From the

evaluations, Ryu exhibited the best performance for most scenarios and metrics. While the performance of POX

was drastically poor, the obtained results showed that the RYU seems to have less delay and jitter in wired

networks as the size of packets decreases, in contrast with the POX controller. In the case of measuring packet loss,

Ryu controller gets a 0% packet drop at a packet size of 512 bytes in both linear and tree topologies. In difference

with the POX controller that recorded about 32% at 128 bytes in wired with linear topology, which is the worst

case in all scenarios. The similar work may be done in the future to test the controller’s security and robustness.

The same operation can also be done on complicated networks, particularly those with multipath connections.

REFERENCES
[1] B. Goswami and S. S. Asadollahi, “Enhancement of LAN infrastructure performance for data center in presence of network security,”

Next-Generation Networks: Advances in Intelligent Systems and Computing, Singapore: Springer, vol. 638, 2018, doi: 10.1007/978-981-
10-6005-2_44.

[2] S. Asadollahi and B. Goswami, “Experimenting with scalability of floodlight controller in software defined networks,” in 2017

International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT),
2017, pp. 288-292, doi: 10.1109/ICEECCOT.2017.8284684.

[3] R. Masoudi and A. Ghaffari, “Software defined networks: A survey,” Journal of Network and Computer Applications, vol. 67, pp. 1–25,

2016, doi: 10.1016/j.jnca.2016.03.016.
[4] M. T. Islam, N. Islam, and M. Al Refat, “Node to Node Performance Evaluation through RYU SDN Controller,” Wireless

Personal Communications, vol. 112, pp. 555–570, 2020, doi: 10.1007/s11277-020-07060-4.

[5] E. Amiri, E. Alizadeh, and M. H. Rezvani, “Controller selection in software defined networks using best-worst multi-criteria decision-
making,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 4, pp. 1506–1517, 2020, doi: 10.11591/eei.v9i4.2393.

[6] S. Askar and F. Keti, “Performance Evaluation of Different SDN Controllers: A Review,” International Journal of Science and

Business, vol. 5, no. 6, pp. 67-80, 2021, doi: 10.5281/zenodo.4742771.
[7] B. A. A. Nunes, M. Mendonca, X. -N. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-defined networking: Past,

present, and future of programmable networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014,

doi: 10.1109/SURV.2014.012214.00180.
[8] D. Cabarkapa and D. Rancic, “Performance Analysis of Ryu-POX Controller in Different Tree-Based SDN Topologies,”

Advances in Electrical and Computer Engineering, vol. 21, no. 3, pp. 31–38, 2021, doi: 10.4316/AECE.2021.03004.

[9] A. Maleki, M. Hossain, J. Georges, E. Rondeau, and T. Divoux, “An SDN Perspective to Mitigate the Energy Consumption of Core
Networks – GÉANT2,” in International SEEDS conference 2017, 2017. [Online]. Available:

https://www.researchgate.net/publication/319876305_An_SDN_Perspective_to_Mitigate_the_Energy_Consumption_of_Core_Networks

_-_GEANT2
[10] S. Asadollahi and B. Goswami, “Revolution in Existing Network under the Influence of Software Defined Network,” in 2017 4th

International Conference on “Computing for Sustainable Global Development, 2017, pp. 1012–1017. [Online]. Available:
https://www.researchgate.net/publication/319537055_Revolution_in_Existing_Network_under_the_Influence_of_Software_Defined_

Networks_SDN

[11] A. Mondal, S. Misra, and I. Maity, “AMOPE: Performance Analysis of OpenFlow Systems in Software-Defined Networks,”
IEEE Systems Journal, vol. 14, no. 1, pp. 124–131, 2020, doi: 10.1109/JSYST.2019.2912843.

[12] G. Aziz and S. Askar, “Software Defined Network Based VANET,” International Journal of Science and Business, vol. 5, no. 3,

pp. 83–91, 2021, doi: 10.5281/zenodo.4497640.
[13] S. Mostafavi, V. Hakami, and F. Paydar, “Performance Evaluation of Software-Defined Networking Controllers: A Comparative

Study,” Journal of Computer and Knowledge Engineering, vol. 2, no. 2, pp. 63–73, 2020, doi: 10.22067/cke.v2i2.84917.

[14] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers: A comparative study,” 2016 18th Mediterranean
Electrotechnical Conference (MELECON), 2016, , pp. 1-6, doi: 10.1109/MELCON.2016.7495430.

[15] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A

comprehensive survey,” in Proc. of the IEEE, vol. 103, no. 1, pp. 14–76, 2015, doi: 10.1109/JPROC.2014.2371999.
[16] T. Zhang and F. Hu, “Controller architecture and performance in software-defined networks,” in Network Innovation through

OpenFlow and SDN Principles and Design, CRC Press, Taylor and Francis Group, 2014, pp. 121–130.

[17] S. Islam, M. A. I. Khan, S. T. Shorno, S. Sarker, and M. A. Siddik, “Performance Evaluation of SDN Controllers in Wireless
Network,” in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT),

2019, pp. 1-5, doi: 10.1109/ICASERT.2019.8934553.

[18] P. E. Numan et al., “On the latency and jitter evaluation of software defined networks,” Bulletin of Electrical Engineering and
Informatics, vol. 8, no. 4, pp. 1507–1516, 2019, doi: 10.11591/eei.v8i4.1578.

[19] S. Bhardwaj and S. N. Panda, “Performance Evaluation Using RYU SDN Controller in Software-Defined Networking

Environment,” Wireless Personal Communications, vol. 122, pp. 701–723, 2022, doi: 10.1007/s11277-021-08920-3.
[20] D. Kumar and M. Sood, “Performance Analysis of Impact of Network Topologies on Different Controllers in SDN,” in International

Conference on Innovative Computing and Communications, 2021, pp. 725-735, doi: 10.1007/978-981-15-5148-2_63.

TELKOMNIKA Telecommun Comput El Control 

Performance evaluation of software-defined networking controllers in … (Salar Jamal Rashid)

59

[21] H. Babbar and S. Rani, “Performance evaluation of QoS metrics in software defined networking using ryu controller,” IOP
Conference Series: Materials Science and Engineering, 2021, vol. 1022, doi: 10.1088/1757-899X/1022/1/012024.

[22] L. Mamushiane and T. Shozi, “A QoS-based evaluation of SDN controllers: ONOS and OpenDayLight,” 2021 IST-Africa

Conference (IST-Africa), 2021, pp. 1-10. [Online]. Available: https://ieeexplore.ieee.org/document/9577034
[23] A. T. A. -Salih, “Performance Evaluation of Ryu Controller in Software Defined Networks,” Journal of Al-Qadisiyah for Computer

Science and Mathematics, vol. 14, no. 1, pp. 1–7, 2022. [Online]. Available: https://www.researchgate.net/publication/359024814_

Performance_Evaluation_of_Ryu_Controller_in_Software_Defined_Networks
[24] L. Cominardi, C. J. Bernardos, P. Serrano, A. Banchs, and A. de la Oliva, “Experimental evaluation of SDN-based service

provisioning in mobile networks,” Computer Standards and Interfaces, vol. 58, pp. 158–166, 2018, doi: 10.1016/j.csi.2018.01.004.

[25] D. Dholakiya, T. Kshirsagar, and A. Nayak, “Survey of Mininet Challenges, Opportunities, and Application in Software-Defined
Network (SDN),” Smart Innovation, Systems and Technologies, vol. 196, pp. 213–221, 2021, doi: 10.1007/978-981-15-7062-9_21.

[26] S. Badotra and S. N. Panda, “Software-defined networking: A novel approach to networks,” Handbook of Computer Networks

and Cyber Security, 2019, pp. 313–339, doi: 10.1007/978-3-030-22277-2_13.
[27] U. Humayun, M. Hamdan, and M. N. Marsono, “Early Flow Table Eviction Impact on Delay and Throughput in Software-

Defined Networks,” in 2021 11th IEEE International Conference on Control System, Computing and Engineering

(ICCSCE), 2021, pp. 7-12, doi: 10.1109/ICCSCE52189.2021.9530933.
[28] M. Bano, A. Qayyum, R. N. B. Rais, and S. S. A. Gilani, “Soft-Mesh: A Robust Routing Architecture for Hybrid SDN and

Wireless Mesh Networks,” IEEE Access, vol. 9, pp. 87715–87730, 2021, doi: 10.1109/ACCESS.2021.3089020.

[29] P. Chauhan and M. Atulkar, “Achieving Enhanced Network Performance in UDP and TCP Traffic of Software Defined
Networking by Selecting Java Based Controllers Decisively,” International Journal Innovative Technology Exploring

Engineering, vol. 9, no. 7, pp. 268–274, 2020, doi: 10.35940/ijitee.g4868.059720.

[30] S. Badotra and S. N. Panda, “Experimental comparison and evaluation of various OpenFlow software defined networking
controllers,” International Journal of Applied Science and Engineering, vol. 17, no. 4, pp. 317–324, 2020. [Online]. Available:

https://gigvvy.com/journals/ijase/articles/ijase-202012-17-4-317.pdf

[31] H. M. Anitha and P. Jayarekha, “A Proposed SDN-Based Cloud Setup in the Virtualized Environment to Enhance Security,” CTIS 2020:
Information and Communication Technology for Intelligent Systems, vol. 196, pp. 453–461, 2020, doi: 10.1007/978-981-15-7062-9_45.

[32] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using open flow: A survey,” IEEE Communications Surveys and

Tutorials, vol. 16, no. 1, pp. 493–512, 2014, doi: 10.1109/SURV.2013.081313.00105.
[33] M. Hamdan et al., “Flow-Aware Elephant Flow Detection for Software-Defined Networks,” IEEE Access, vol. 8, pp. 72585–72597, 2020,

doi: 10.1109/ACCESS.2020.2987977.

[34] S. I. Boucetta and Z. C. Johanyák, “Review on Networks Defined by Software,” Gradus, vol. 7, no. 2, pp. 230–238, 2020,
doi: 10.47833/2020.2.csc.001.

[35] A. Shirvar and B. Goswami, “Performance comparison of software-defined network controllers,” in 2021 International

Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 2021, pp. 1-13,
doi: 10.1109/ICAECT49130.2021.9392559.

[36] R. C. Meena, M. Bundele, and M. Nawal, “RYU SDN Controller Testbed for Performance Testing of Source Address Validation

Techniques,” in 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and
Internet of Things (ICETCE), 2020, pp. 1-6, doi: 10.1109/ICETCE48199.2020.9091748.

BIOGRAPHIES OF AUTHORS

Salar Jamal Rashid received the B.Sc. and M.Sc. degree in Computer Engineering

Technology from Northern Technical University, Iraq in 2011 and 2016 respectively. His current

research interests include Internet of Things, Computer Networks, and Information and

communication Technology. He can be contacted at email: salar.jamal@ntu.edu.iq.

Ahmed Maamoon Alkababji received the B.Sc., M.Sc. and PhD degree in Electrical

Engineering from University of Mosul, Iraq in 1994. 1996 and 2007. Currently, a professor at

computer engineering department in University of Mosul, Iraq. Research interest in signal

processing, realtime systems and biometric engineering. He can be contacted at email:

ahmedalkababji72@uomosul.edu.iq.

Abdul Sattar Mohammed Khidhir received B.Sc. and M.Sc. in Electronics

Engineering from University of Mosul / Iraq. He received Ph.D. in Communications Engineering

from University of Mosul too. He is working at Mosul Technical Institute / Northern Technical

University - Iraq. He supervised many Ph.D. and M.Sc. projects, and published many papers in

many fields. He can be contacted at email: abdulsattarmk@ntu.edu.iq.

https://orcid.org/0000-0002-0725-8042
https://scholar.google.com/citations?hl=ar&user=7lTK-E8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57218125927
https://www.webofscience.com/wos/author/record/1532216
https://orcid.org/0000-0002-0250-9981
https://scholar.google.com/citations?user=Kf3P49kAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55750507600
https://www.webofscience.com/wos/author/record/1474911
https://orcid.org/0000-0001-6710-0987
https://scholar.google.com/citations?user=wPXOA9cAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57225144859
https://www.webofscience.com/wos/author/record/1115041

