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Abstract 
A Cellular Automata (CA) model is used for visualizing and predicting spreading pattern of the 

disease. The main problem of this model is how to find a function that represents an update rule that 
changes the state of a cell in time steps affected by neighborhood. This research aims to develop 
visualization and prediction model of the spreading patterns of Dengue Hemorrhagic Fever. The 
contribution of our study is to introduce a new approach in defining a probabilistic function that represents 
CA transmission rule by employing Von Neumann neighborhood and the Hidden Markov Model (HMM). 
This study only considered an infective state which dedicated particular attention to the spatial distribution 
of infected areas. The infected data were devided into four categories and change the definition of a cell as 
an area. The evaluation was conducted by comparing the results of the proposed model to that of one 
yielded by a Susceptible-Infected-Recovered (SIR) model. The evaluation result showed that the CA 
model was capable of generating patterns that similar to the patterns generated by SIR models with a 
similarities value of 0.95. 
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1. Introduction 

Modeling is a simplification of a real problem, aiming to study and understand the 
phenomena in the real world. In epidemiology, system modeling approach is commonly used for 
viewing the epidemic process [1]. Most of the models for epidemics simulations are based on 
Ordinary Differential Equations (ODE) or statistical model [2-4]. Moreover, visualization is 
required as the first step in epidemiological analysis to understand the spatial characteristics of 
a dataset [2]. The visualization is needed for identifying the epidemiology of disease pattern in a 
given geographical area, predicting the spreading pattern of disease in the next period, and 
creating awareness to the target stakeholders based on the prediction results, hence help 
clinical management of disease [2]. Unfortunately, ODE or statistical models are unable to 
elaborate spatial patterns and interactions such as in visualizing and predicting spreading 
disease [3].  

To overcome these limitations, researchers used Cellular Automata (CA) models for 
involving time and space in epidemic process analysis [5]. Some studies have been conducted 
such as developing a mathematical model of disease spread and its simulation using Cellular 
Automata (CA) [6], analyzing some scenarios of disease spread [7], applying the CA approach 
to the Susceptible-Infective-Recovered (SIR) model of disease spread by considering birth and 
death factors and the changes of rules for each state in the dynamic CA [8], and analyzing the 
complex spatiotemporal patterns observed in transmission of vector infectious disease [9]. 

Basically, CA is one of the dynamic system approaches that implements discretization 
of time and space [3, 5, 10]. CA consists of cells, called cellular space, a local connection of to 
other cells, and boundary conditions [3]. Each cell, representing a state, can change at every 
time-step using local transmission rules which would generate a new state based on the 
previous state of the cell and its neighborhood. Therefore, the concept of neighborhoods is very 
important. The effects of neighborhood structures on diseases spreading by using the 
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susceptible-infected (SI) epidemics CA-model was shown in [5]. Moreover, the rule of 
neighborhood in determining the model interactions was described in [11].  

The other important aspect that determines the accuracy of CA model is the transmition 
rule f. This rule was able to be represented as a deterministic or probabilistic function [9-10]. 
Many methods to find function f as rule of the CA model have been introduced such as using 
Markov Chain [12], the differential equations of the classical model [13], and the Genetic 
Algorithm [14]. This research used the Hidden Markov Model (HMM) to find a probabilistic 
function that represented the CA transmission rule, which has not been used by researchers 
yet. HMM is a probabilistic model that is suitable for solving the problem related to the data 
sequential-temporal [15]. To show the effectiveness of the proposed model, this approach was 
implemented on the Dengue Fever case.  

The reason for using the Dengue Fever case is because it counts as one of the deadly 
and infectious pandemic diseases in Indonesia. This disease, also called Dengue Hemorrhagic 
Fever (DHF), is caused by the Dengue virus and is transmitted by the Aedes aegypti mosquito 
as a vector. Several studies related to the monitoring of DHF in Indonesia have been 
conducted, such as the studies that aimed to see the trend of dengue outbreak in the future [16-
17]. The Time Series method for showing the trend of dengue outbreak was used in [16]. The 
study predicted the number of dengue fever patients for the next four years based on DHF 
patient data in the province of North Sumatra from 2005 to 2009. The Autoregressive Integrated 
Moving Average (ARIMA) was compared to the Winter approach to predict the number of DHF 
cases in the next six months [17]. This research used DHF cases data from Surabaya from 
January 2005 - June 2010 and applied four models of the Winter method and three models of 
the ARIMA method.  

This paper explained how to develop a spreading pattern model of DHF on CA model 
that was used for visualizing and predicting spreading pattern of DHF. This study especially 
focused on determining a probabilistic function using HMM. The dataset from a limited area 
such as West Bogor in the period of 2013 was used and defined the state criteria. Moreover, 
this study only considered an invective state which dedicated particular attention to the spatial 
distribution of infected areas. The evaluation was conducted by comparing the results of the 
proposed model to that of the one yielded by the SIR method, as a classical approach.  

 
 
2. Research Method 

To achieve the research objective, several stages were done, including: collecting 
datasets, defining the model CA, constructing the data, predicting the spread of disease using 
an obtained model, and evaluating the model. 

 
2.1. Dataset 

In collecting the datasets, some steps were done as follows: identification of 
geographical study area, conducting field study for data collection, deciding sample used in this 
research, determining the source of the data. The dataset were collected from Dinas Kesehatan 
Kota Bogor (DKK-Bogor) an interview technique. The interview was conducted with the DKK-
Bogor Data Officer on July 16, 2014. Table 1 showed the dataset that contains the Dengue 
Fever cases that occurred in West Bogor in 2013. 
 
2.2. Defining of CA Model 

A Cellular Automata (CA) is a discrete model consisting of points or identical cells that 
each in one certain state at the time. A state value that is allowed to a cell is the value of set of 
states which have been defined. The State of a cell changes according to a local transition rule 
at the next time in time-step [3, 18]. Those cells are arranged uniformly in cellular space that 
can be one-dimensional, two-dimensional or three-dimensional. The state condition of one cell  
at the next time, t+1, depends on the states of the other cells surrounding, called its 
neighborhood, at the time, t. Mathematically the CA model is defined as a 4-uplet (C, S, V, f). C 
represents a cellular space. S represents a set of possible state values for each cell in the 
cellular space. V is a set of neighborhoods around a focus cell. Function f defines a local 
transition function that represents an update rule for each state change of each cell [6]. There 
are four steps for defining the CA model, such as: defining a cellular space, defining 
neighborhood used in a cellular space, defining the criteria of the possible state values, and 
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finding some probabilistic functions f that represent the CA rule. Function f is required to obtain 
a spreading pattern of Dengue Fever. 
 
 

Table 1. Number of Dengue Cases in West Bogor in 2013 

Id of cell Region 
Number of DHF cases per period 

1 2 3 4 5 6 7 8 9 10 11 12 
1. Situ Gede 1 0 0 0 0 1 0 0 0 0 0 0 
2. Bubulak 2 1 4 0 1 0 3 0 0 0 0 0 
3. Curug 7 2 2 3 3 0 1 0 1 0 3 3 
4. Curug Mekar 1 0 3 0 1 0 0 0 0 0 2 0 
5. Balumbang Jaya 0 0 0 0 1 0 0 0 0 0 0 3 
6. Sindang Barang 2 2 4 0 1 2 6 0 2 2 0 0 
7. Semplak 2 0 1 0 1 0 0 0 1 0 3 1 
8. Cilendek Timur 5 2 0 0 1 1 4 0 0 0 1 0 
9. Margajaya 1 0 0 2 0 1 0 0 0 0 0 0 

10. Menteng 2 1 2 1 0 2 6 0 0 1 2 0 
11. Cilendek Barat 1 4 3 0 2 1 4 0 4 0 2 0 
12. Pasir Jaya 1 0 0 1 1 0 0 0 0 0 0 0 
13. Gunung Batu 7 3 1 2 0 1 4 0 1 0 1 1 
14. Loji 0 1 1 0 1 0 0 0 0 0 6 0 
15. Pasir Mulya 1 1 0 0 0 0 2 0 0 0 0 0 
16. Pasir Kuda 2 3 1 1 0 0 1 0 1 0 2 1 

Source: Dinas Kesehatan Kota Bogor 
 
 
This research defined 16 cells in two-dimensional cellular space (Figure 1), which 

represent 16 regions in West Bogor (Table 1). Each cell represents a region according to id of 
cell listed in Table 1. For instance, the first cell in Figure 1 represents a region of Situ Gede (a 
region with id 1 in Table 1). Each cell defines ununiformed objects and describes the number of 
dengue cases that occurred in the region. The number of cell in the cellular spaces actually 
does not always have to be the same as the number of the observed regions. For instance, The 
20 or 25 cellular spaces for the 16 observed regions could be defined by adding the definition of 
boundary regions (the regions which are not included into the 16 observed regions) [3]. In 
addition, in this study assumed null boundary conditions for the proposed model. The 4-
neighborhoods from Von Neumann was used, a collection of five cells in which the middle cell is 
a focus of attention as shown in Figure 2 [6].  

 
 

  
Figure 1. An Example of a Cellular Space 

Construction 
Figure 2. Von Neumann-Neighborhoods 

 
 

The remaining cells are cells that affect the state change of a cell in subsequent periods. The 
research that related to the state changes of a cell in a two-dimensional has performed in [19]. 
In this research, the concept of state change was used for selecting attributes. The state 
changes was calculated based on the change of shape of the geometry which represented the 
affecting result of two dimensional rules which is applied to the pair of the attributes [19]. The 
proposed model defined state changes based on data content on location. First, the categories 
values were defined in four categories and setting color for each category. Next, the state 
changes were seen as a cell color change in the cellular space. In HMM, the state changes are 
described as the state transition diagram. The four colors and its criteria of states are shown in 
Table 2. The next step was how to determine a Function f that represented the CA Rule based 
on the defined parameters. 
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In detail, the proposed method was described as follows. Firstly, from the dataset that 
consist of 16 regions, this study defined the two-dimensional space and put each region into 
one cell and set an index for each cell, then it defined an array variable to represent the 16 cells 
in which each cell has an index. Next, the number of data cases for each region (number of 
infected) were put into an array variable in which the data in one period were stored into an 
array variable, running as time-step. Finally, with a set of states criteria (Table 2), the data 
cases with the data states were replaced. 

 
 

Table 2. State Definition of Infected Area 
State State Definition State Colour 
S1 : all peoples have been recovered, or no one was infected  
S2 : 1-2  peoples were infected  
S3 : 3-5 peoples were infected  
S4 : > five peoples were infected  

   

 
 
The main problem of this research is how to find the function that represents a proper 

CA’s rule. Many methods to find function f as rule of CA model have been conducted, and this 
research used HMM, a method that has not been used by researchers yet. By ignoring both the 
death and the birth factors, and by assuming that the probability of an infected cell was affected 
by surrounding cells, the HMM approach was suitable to be used to determine a probabilistic 
function f.  

The CA characteristic was represented as a Markov process [20]. Since the dataset 
was able to be classified as a time series dataset, it was proper to use a probabilistic function 
that can be found using HMM. HMM is a probabilistic model that is suitable for solving the 
problem related to the data sequential-temporal [12]. Mathematically, the HMM is written as 

( , , )T E  , where λ is the HMM model, T is a matrix of Transition Probabilities, E is a Matrix 

of Emission Probabilities, and π is a Prior Matrix [15]. In the CA model that has been defined, 
the change of a cell state to another state can be described by a State Transition Diagram. The 
State Transition Diagram express HMM model as T. The state change probabilities of a certain 
area affected by its neighborhoods are called as emission probabilities that express HMM model 
as E. 
 
 

 
Figure 3. State Transition Diagram – Ergodic 

HMM 
 

 
Table 3. Transition Probabilities Matrix 

Period n-1
Period n 

S1 S2 S3 S4 Σ
S1 P(S1|S1) P(S1|S2) P(S1|S3) P(S1|S4) 1
S2 P(S2|S1) P(S2|S2) P(S2|S3) P(S2|S4) 1
S3 P(S3|S1) P(S3|S2) P(S3|S3) P(S3|S4) 1
S4 P(S4|S1) P(S4|S2) P(S4|S3) P(S4|S4) 1

 
 

 
Table 4. Emission Probabilities Matrix 

Main Object (C) 
Observed Object (Vi) 

S1 S2 S3 S4 
S1 P(C=S1|Xi=S1) P(C=S1|Xi=S2) P(C=S1|Xi=S3) P(C=S1|Xi=S4) 
S2 P(C=S2|Xi=S1) P(C=S2|Xi=S2) P(C=S2|Xi=S3) P(C=S2|Xi=S4) 
S3 P(C=S3|Xi=S1) P(C=S3|Xi=S2) P(C=S3|Xi=S3) P(C=S3|Xi=S4) 
S4 P(C=S4|Xi=S1) P(C=S4|Xi=S2) P(C=S4|Xi=S3) P(C=S4|Xi=S4) 
Σ 1 1 1 1 

 
 
Based on the states criteria (Figure 3), Ergodic Hidden Markov Models (Ergodic-HMM) 

was applied to get a probabilistic function [21, 22]. Each arrow in the state diagram represents a 
probability value of an object to change the value of a state from one period to the next one. The 
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values were stored in T as shown in Table 3. The Emission Probabilities were stored in E as 
shown in Table 4. This study assumed that the initial state of a cell at the beginning of the 
period had the same probability of possible states values. Thus, the prior probabilities were 
ignored. 

The probability of an object (Ci) to change its state was calculated using Bayes theorem 
as follows: 

 
( | C ). (C )

(C | )
( )

i i i
i i

i

P X P
P X

P X


       

(1) 

 
In general, it was written as: 
 

1 2 1 2 1
1 1

( , , ..., | , , ..., ) ( | ). ( | )
n n

n n i i i i
i i

P C C C X X X P X C P C C 
 

 
    (2) 

 
The Transition Probability value was calculated by the formula:  
 

( | ) ij

i

S
P Si Sj

S



        (3) 

 
Moreover, the Emission Probabilities value was calculated by the formula:  
 

0( | S )
j

Vi
i j

Vi

S
P V V

S
 


        (4) 

 
2.3. Data Construction for Spreading Pattern 

Data attributes used in this research are: “name of a region” and “number of Dengue 
cases”. The cellular space is defined as a two-dimensional space in which each cell represents 
a region with some Dengue cases in each period. The total region in West Bogor is 16 regions. 
Thus, 16 cells were defined. Each cell contained some un-uniformed objects that described 
some Dengue cases that occurred in a region for the certain period. Each cell was defined as a 

one-dimensional variable  / 1,2,..,16iX X i  . Variable Xi represented a region as shown in 

Figure.1. Cell neighborhoods were defined as a one-dimensional array variable

 | 0,1,2,3,4,5jV V j 
. 

The Neighborhood frame moved in the cellular space with the 

equation: 
 

0 iV X ; 1 4iV X  ; 2 1iV X  ; 3 4iV X  ; 4 4iV X       (5) 

 
The Neighborhood frame as indicated in Figure 2 moved to each cell in the cellular 

space. Whenever moving, the initial condition states of each cell were checked. Next, the 
maximum probability value of the focus cell to changes of the state value for the next period was 
calculated. States value was represented by an array, with the array variable of

 1 2 3 4, , ,S S S S S . To build a simulation model, Excel spreadsheets was used as a tool to 

find a probabilistic function, and used Scipy module in Python 3.4 as tool for evaluating the 
proposed model. 

 
2.4. Predict the Disease Spread Patterns using a Proposed Model 

In order to predict the spreading pattern of Dengue Fever, the CA model was applied to 
a new dataset. To initialize the simulation, the John von Neumann-Random Number Generator 
based on the CA rule was used, that is equivalent to a two-dimensional space for generating the 
jth cell in the ith-row by taking cells from the previous row [23] as follows: 
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 ( ) ( 1) ( 1) ( 1) ( 1) ( 1)

1 1 1
mod 4

i i i i i i

j j j j j jx x x x x x
    

  
   

    
(6) 

Where mod 4 indicates the number of states that 
( )i

jx  
might describe the jth cell in the ith-row 

which can take on the value 0,1,2, and 3. The values of the cells in the first row, which range 
from 0 to 3, were randomly assigned by Simple Linear Congruential Generators.  

 
2.5. Verification and Validation 

Evaluation of the proposed models was conducted by doing verification and validation. 
Model verification aims to ensure that the CA model has been implemented correctly. Moreover, 
the purpose of validation is to determine whether the theory and assumptions underlying the 
preparation of this model are correct [24]. The SIR-model (Susceptible-Infected-Recovered) is a 
simple mathematical model based on ODE that has been proven to be an acceptable model in 
the epidemic fields [25]. The SIR model was represented as shown: 

 

         (7) 
 

        (8) 
 

         (9) 
 

Where S = number of susceptible, I = number of infectious, and R = number of recovered. 
Case β represents the transmission probability of the disease and γ represents the period of 
infection. 

Verification of the model was conducted by comparing the tendency of graphs yielded 
by the proposed model, and the trend graphs yielded by the SIR model. Sequentially, validation 
of the model was performing by measuring the proximity of the simulation results of the 
proposed model and those of the SIR-model using a correlation coefficient measure to compute 
similarity [26]: 

 

1

( )( )
( , )

( 1)

n

i i
i

X Y

X X Y Y
Corr X Y

n  


 





       (10) 

 

Where iX  and X  are declared time-series data and the average generated by the proposed 

model, respectively, iY  and Y  are declared time-series data and the average generated by the 

SIR model, respectively. X  and Y represented standard deviation of variable X and variable 

Y. The similarity value lies between 0.5 - 1. The closer it gets to 1,  the two time-series data can 
be said to be similar [27]. 
 
 
3. Results and Analysis 
3.1. Probabilistic Functions Obtained as Rule on CA Model 

The spreading pattern and prediction model were represented by the probabilistic 
function that represents the CA rule. The probabilistic function obtained in this research is 
described as follows: 

 
44

1
0 0 0

i 1 1

( | S ). ( S | )max n n n
j i i

j

f P V V P V V 

 

 
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 

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Where 0
nV  represents state value of cell V0 in n-th period, and 1

0( | )n n
o iP V S V   is the 

probability of V0 that is at Si in the next period. This function allows us to choose the maximum 
value of the probability of the state change. It means that the change of a state in the cell of V0 
in the next period depends on the maximum probability value obtained from equation (12-15). 
These probabilities consist of four possibility values that are defined as follows.  
 

4
1

0 1 1 2 3 4 0 1 0 1 0
1

( S | , , , ) ( | S ). ( S | )n n n n
i

i

P V V V V V P V V P V V 



      (12) 

 
4

1
0 2 1 2 3 4 0 2 0 2 0

1

( S | , , , ) ( | S ). ( S | )n n n n
i

i

P V V V V V P V V P V V 



   
  

(13) 

 
4

1
0 3 1 2 3 4 0 3 0 3 0

1

( S | , , , ) ( | S ). ( S | )n n n n
i

i

P V V V V V P V V P V V 



   
  

(14) 

 
4

1
0 4 1 2 3 4 0 4 0 4 0

1

( S | , , , ) ( | S ). ( S | )n n n n
i

i

P V V V V V P V V P V V 



      (15)\ 

 

The values of 0 1( | S )n
iP V V  ; 0 2( | S )n

iP V V 
; 0 3( | S )n

iP V V  ; 0 4( | S )n
iP V V   were obtained from 

the Emission Probabilities Matrix using the equation (15-18). Moreover, the values of 
1

0 1 0( S | )n nP V V  ; 
1

0 2 0( S | )n nP V V  ; 
1

0 3 0( S | )n nP V V  ; 
1

0 4 0( S | )n nP V V   were obtained from T, 
1

0 0( | )n nP V V 

 was obtained based on the formula described in Table 3 with the results of 
probability values as follows (Equation 16):  
 

1
0 0

0.60 0.32 0.06 0.01

0.54 0.30 0.13 0.03

0.59 0.24 0.18 0.00

0.60 0.20 0.20 0.00

( | )n nP V V 

 
 
 
 
 
 

     (16) 

 
This matrix shows that the change from state S4 to S1 has the highest probability value. The 
matrix also shows that the possibility of a cell's state change next period from S3 to S4 was very 
small or never occurred. Moreover, if the condition of a cell was in the state of S4, the state 
tends to change to the better condition because the probability of the cell’s state to keep its 
state was very small or never occurred. It means that there were always the preventive actions 
to stop the spreading of Dengue Fever diseases in this area.  

In this research, E is a matrix for representing the state change probabilities of a certain 
area affected by its neighborhood. There were four matrices E as sequently, from Equation 17 
up to Equation 20 as follows. 

 

1 0

0.6579 0.2500 0.0789 0.0132

0.4423 0.4038 0.1346 0.0192

0.5833 0.2500 0.1667 0.0000

0.0000 0.5000 0.2500 0.2500

( | )P V V

 
 
 
 
 
 

    (17) 

Equation (17) described the probability of a state change of cell V1 on the next period that is 
affected by the state change of cell V0. It was shown that the probability of V1’s state changing 
to S4 was very small or never occurred, while V0 was in S3. Moreover, this matrix also showed 
that the change from the state of area V1 to S1, while V0 was in S4 never occurred.  
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2 0

0.6538 0.2692 0.0769 0.0000

0.4255 0.4255 0.1277 0.0213

0.4667 0.2667 0.2000 0.0667

0.2500 0.5000 0.2500 0.0000

( | )P V V

 
 
 
 
 
 

    (18) 

 
Equation (18) shows that the state change of V2 to S4, affected by V0, would never occur while 
the state of V0 is in the condition of S1 or S4. 
 

3 0

0.6250 0.2875 0.0875 0.0000

0.4222 0.4667 0.0667 0.0444

0.3750 0.4375 0.1250 0.0625

0.3333 0.3333 0.0000 0.3333

( | )P V V

 
 
 
 
 
 

     (19) 

 
Equation (19) describes the probability of a state change of cell V3 on the next period that is 
affected by the state condition of V0. Equation (20) describes the probability of a state change of 
cell V4 on the next period that is affected by the V0 state condition. From the four matrices 
above, it is concluded that the extreme change conditions of the neighborhoods to S4, affected 
by the focus area, are very rare. 
 

4 0

0.6456 0.2532 0.0886 0.0127

0.4468 0.4255 0.0851 0.0426

0.3750 0.3750 0.1875 0.0625

0.0000 0.5000 0.5000 0.0000

( | )P V V

 
 
 
 
 
 

     (20) 

 
3.2. Prediction Model Results Obtained Using CA Model 

An example of the simulation results is shown in Figure 4. The pattern obtained using 
Equation (11). The inputs to this equation were the Odds Transition Matrix (Equation 16), the 
Odds Emissions Matrix (Equation 17-20), and the randomized data initialization that was 
obtained by Equation (6). The visualization of the obtained pattern results indicated that the 
spread of Dengue disease occurred on average in seven to eight periods. 

 
 

 
 

Figure 4. The Prediction Results of Dengue Spreading Pattern on The CA Model 
 
 

From several computational simulations, it was seen that if the disease began to spread 
simultaneously in cells 11 and 16, the pandemic would subside in a longer period. For example, 
cells 11 and 16, respectively, represented the area of Cilendek Barat and Pasir Kuda. It also 
appears that cell 15, representing the area Pasir Mulya, is the most vulnerable cell to the spread 
of the disease. It was shown with the color indicator in that area. 
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3.3. Evaluation 
Verification was conducted by comparing the prediction results yielded by the proposed 

model (using the CA approach) to those of the ones yielded by the SIR model (a classic and 
popular approach). The verification results showed that the slope of the infected area-period 
graph (Figure 5) that represented the CA model (the proposed model) was similar to that of the 
SIR model.   

 

 
 

Figure 5. The Tendency of Graph Number of Infected Area in Bogor Barat 
 
 

In addition, validation was conducted by calculating the similarity between the resulting 
prediction using the CA model and that of the one obtained by the SIR model using Equation 
10. The validation result indicated that the resulting prediction using CA had similarities to the 
SIR model of 0.95. Thus, based on the verification and validation results, it was able to be 
stated that the proposed approach using CA had been implemented correctly, and that the 
assumptions underlying this model are correct. Thus, the visualization of the spreading pattern 
yielded by this model was able to be used for understanding and predicting the spread of 
Dengue disease. This prediction is required for helping prevent the spread of Dengue disease in 
prone regions. However, the proposed model still has a limitation in that it did not consider the 
behavior of people. Thus, this model is only valid to a relatively static society. 

 
 

4. Conclusion 
From the results, it was concluded that a spreading pattern model of the Dengue Fever 

based on the CA approach was successfully developed by setting four parameters supported by 
HMM and using Von Neumann neighborhood. The proposed model was able to predict the 
spread of Dengue disease and provided us the information of which area should be observed 
carefully. Moreover, the evaluation result showed that the CA model was capable of generating 
patterns similar to that of the one generated by SIR models with a similarity value of 0.95. 
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