
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 23, No. 3, June 2025, pp. 682∼693
ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v23i3.26059 ❒ 682

Convolutional neural network-based real-time drowsy
driver detection for accident prevention

Nippon Datta1, Tanjim Mahmud2, Manoara Begum3, Mohammad Tarek Aziz1, Dilshad Islam4, Md.
Faisal Bin Abdul Aziz5, Khudaybergen Kochkarov6, Temur Eshchanov7, Valisher Sapayev Odilbek

Uglu8, Sobir Parmanov9, Mohammad Shahadat Hossain10,11, Karl Andersson11
1Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh

2Department of Computer Science and Engineering, Rangamati Science and Technology University, Rangamati, Bangladesh
3Department of Computer Science and Engineering, Port City International University, Chittagong, Bangladesh

4Department of Physical and Mathematical Sciences, Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh
5Department of Computer Science and Engineering, Comilla University, Comilla, Bangladesh
6Department of Special Science, Tashkent State University of Economy, Tashkent, Uzbekistan

7Urgech State University Named After Abu Rayhon Beruni, Urgench, Uzbekistan
8Department of General Professional Subjects, Mamun University, Khiva, Uzbekistan

9National University of Uzbekistan, Tashkent, Uzbekistan
10Department of Computer Science and Engineering, University of Chittagong, Chittagong, Bangladesh
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ABSTRACT

Drowsy driving significantly threatens road safety, contributing to many acci-
dents globally. This paper presents a convolutional neural network (CNN)-based
real-time drowsy driver detection system aimed at preventing such accidents,
particularly for deployment in Android applications. We propose a lightweight
CNN architecture that effectively identifies drowsiness and microsleep episodes
by categorizing driver facial expressions into four distinct categories: close-eye
expressions, open-eye expressions, yawns, and no yawns. Our model, which
employs facial landmark detection and various pre-processing techniques to
enhance accuracy, achieves an impressive 96.6% accuracy. This performance
surpasses several popular CNN architectures, including VGG16, VGG19, Mo-
bileNetV2, ResNet50, and DenseNet121. Notably, our proposed model is highly
efficient, with only 0.4 million parameters and a memory requirement of 1.51
MB, making it ideal for real-time applications. The comparative analysis high-
lights the superior balance between accuracy and resource efficiency of our
model, demonstrating its potential for practical deployment in reducing acci-
dents caused by driver fatigue.
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1. INTRODUCTION
Driving while drowsy poses a significant risk to road safety, contributing to a rising number of traffic

accidents globally [1]. The prevalence of these accidents underscores the critical need for effective drowsy
driver detection systems to prevent potential fatalities and injuries. Tiredness while driving can result from
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various factors, including sleep deprivation, medication, alcohol consumption, or night shifts [2]. Statistics
reveal the alarming frequency of traffic accidents caused by drowsy driving, making it a pressing issue in road
safety. Injuries and fatalities resulting from car accidents rank among the leading causes of death worldwide,
with a staggering number of casualties reported annually [3]. Detecting driver sleepiness is imperative for the
development of automobile safety technologies aimed at preventing road accidents. The advancement of such
technologies is crucial in light of the escalating number of traffic accidents attributed to drowsy driving [4]-[6].

Numerous studies have investigated various methods for detecting driver drowsiness to improve road
safety. For instance, Knapik and Cyganek [7] used thermal imaging to detect yawning with 71% and 87%
accuracy for cold and hot voxels, respectively. Kiashari et al. [8] monitored respiration patterns via facial ther-
mal imaging, achieving 83% accuracy with k-nearest neighbor (KNN) and 92% sensitivity with support vector
machine (SVM). Dalal and Triggs [9], a 3D-deep convolutional neural network (CNN) framework achieved
76.2% accuracy in monitoring eye, mouth, and head movements on the NTHUDDD dataset. Moujahid et al.
[10] proposed a system using eye, head, and mouth movements, achieving 79.84% accuracy with a non-linear
SVM. You et al. [11] introduced a 3D CNN-based method that reached 73.9% accuracy by analyzing facial
features without pre-specification. Eye-tracking features were central to [12], with Random Forest achieving up
to 91.18% accuracy. Mardi et al. [13] used electroencephalogram (EEG) data and neural networks for 83.3%
accuracy in sleepiness classification. Noori et al. [14] combined EEG, Electrooculography, and driving signals
for 76.51% accuracy using a self-organized map network. Other methods include steering pattern analysis
[15], eye blink rate detection [16], yawning detection [17], CNN-based approaches [18], and advanced driver
assistance systems [19].

This paper presents a CNN-based real-time drowsy driver detection system designed to mitigate the
risks associated with tired driving. The proposed model leverages facial detection techniques and eye area
identification to monitor driver fatigue. By utilizing advanced image processing algorithms [20], [21], the
system detects key indicators of drowsiness, such as closed-eye expressions, open-eye expressions, and yawns.

The contributions of this paper include: i) introduce a lightweight CNN architecture for real-time
drowsiness detection; ii) apply facial landmark detector and various pre-processing techniques to the dataset to
identify major facial features; iii) comparison with other model memory requirements and parameters; and iv)
comparison with other existing research work.

The subsequent sections of the paper are organized as follows: in section 2, we introduce the proposed
methodology for drowsy driver detection. The results and analysis of the detection system are discussed in
section 3, while section 4 encapsulates the paper’s conclusion and outlines future directions for research in this
domain.

2. METHOD
The fundamental structure of the suggested system is based on four modules: dataset description, pre-

processing, lightweight CNN, and classification. The primary architecture of the proposed system is shown in
Figure 1.
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Figure 1. Main block diagram of the proposed system
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2.1. Dataset description
The dataset of this study has been collected from Kaggle, which has four classes: ’close’, ’open’,

’yawn’, and ’no yawn’. It has 2,175 files in these four categories. Table 1 shows the details of the drowsy
driver detection dataset. This dataset shows that close and open categories consist of 617 images. On the other
hand, yawn has 472 and no yawn has 469 images. The sample images of the dataset are shown in Figure 2.

Table 1. Details of drowsy driver detection dataset
Class name Quantity of images
Close 617
Open 617
Yawn 472
No yawn 469
Total 2,175

Open Close Yawn No_yawn

Figure 2. Sample images of the drowsy driver detection dataset

2.2. Pre-processing
Image pre-processing is one of the most crucial parts of computer vision tasks. In this study, we have

used four different image pre-processing techniques: applying facial landmark predictor (FLP), data augmen-
tation, data flipping, and data normalization.

2.2.1. Apply facial landmark predictor
FLP refers to facial landmark predictor. From the dataset description, it is seen that the yawn and

not yawn class has taken a major part of the human body including background. But to detect the yawn and
no yawn we just need the portion of mouth. So, we have used shape predictor 68 face landmarks.dat file to
detect the portion of the mouth and cropped it. The block diagram of FLP is shown in Figure 3.
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Predict Facial 
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Region

Cropped 
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Figure 3. Block diagram of FLP

At first, FLP detects the face from in input image, then it predicts the facial landmark. After that,
we have to define the mouth landmark indices. In this study, we have defined the mouth landmark indices as
(48,48) and then extracted the mouth region. Finally, we saved it to our dataset. The result of before and after
using FLP is shown in Figure 4.

Before FLP

After FLP

Figure 4. Before and after using FLP
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2.2.2. Data augmentation
Data augmentation is an essential part of computer vision tasks. It is used to increase the number of

images and to bring the diversity of data. The dataset that we have used in this study consists of 2,175 images
in four categories. Another issue was that there was a class imbalance problem in this dataset. Algorithm 1
illustrates the data augmentation technique for the proposed system.

Algorithm 1. Data augmentation algorithm
1. Define image folder path (fp)
2. Define the image number per folder (imgnum).
3. DataAugmentation (rot rng, ws rng, hs rng, sh rng, zm rng)
for i← 1 to fp do

a. Directory creation (aug fold path).
b. Load images
c. Calculate the required number of aug steps
I. num org img = images of the main folder
II. aug steps = imgnum // num org img
d. Initialize: DataAugmentation
for k ← 1 to aug steps do

- Apply data augmentation using pre-defined parameters
- Save augmented images to the aug fold path.
- k++

end for
end for
Output:
4. Print the Generated Images

In Algorithm 1, rot rng, ws rng, hs rng, sh rng, zm rng stands for rotation range, width shift range,
height shift range, shear range and zoom range respectively. num org img and aug steps refer to the number
of original image and augmentation steps. In this study, we have used an augmentation technique where we
set,
rotation range=10,
width shift range=0.1,
height shift range=0.1,
shear range=0.1,
zoom range=0.1,

In this algorithm, we have set the target number of images at first which is 2,000. After that, we
calculate the number of original images in the folder. Then find out how many augmentation steps are needed
to convert it to 2,000. After we used the data augmentation technique using the predefined parameters and
saved the augmented images. Finally, we converted each category to 2,000 images and the total dataset images
to 8,000.

2.2.3. Data flipping
Flipping is a common image processing technique used to create variations in training data. There are

two types of flipping: horizontal and vertical. In this study, we have used horizontal flip=True. An object on
the left side of the original image will be on the right side of the horizontally flipped version.

2.2.4. Data normalization
Before supplying pictures to deep learning models or carrying out additional analysis, data normal-

ization is frequently used as a preparatory step in image processing. Generally, the image pixels belong to 0 to
255 in an RGB image. In this study, we have converted and rescaled them into the range of [0,1].

2.3. Lightweight convolutional neural network for feature extraction
CNN has five main modules: convolutional layers, pooling layers, fully connected layers, activation

layers, and backpropagation [22]. CNN has a major contribution to the field of computer vision and it is widely
used in several domains such as segmentation, detection, and classification. In this study, we have proposed a
lightweight CNN-based model to extract features from our image dataset. The block diagram of lightweight
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CNN has been shown in Figure 5. The detailed parameter of the proposed lightweight CNN has been shown in
Table 2.
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Figure 5. Block diagram of proposed lightweight CNN

Table 2. Detail parameter of proposed lightweight CNN model
Input shape (128,128,3)
Layer name Filter size Filters number Pool size Output shape Parameters
Conv2D (3,3) 16 - None, 128, 128, 16 448
max pooling2d - - (2, 2) (None, 64, 64, 16) 0
conv2d 1 (3,3) 32 - (None, 64, 64, 32) 4640
max pooling2d 1 - - (2, 2) (None, 32, 32, 32) 0
conv2d 2 (3,3) 64 (None, 30, 30, 64) 18496
max pooling2d 2 - - (2, 2) (None, 15, 15, 64) 0
conv2d 3 (3,3) 128 - (None, 13, 13, 128) 73856
max pooling2d 3 - - (2, 2) (None, 6, 6, 128) 0
Flatten - - - (None, 4608) 0
dense - - - (None, 64) 294976
dense 1 - - - (None, 32) 2080
Dense 2 - - - (None, 16) 528
Dense 3 - - - (None, 4) 68
Total parameters 395,092 (1.51 MB)

In this proposed CNN model we have used four convolutional layers, four max-pooling layers, one
flattened layer, and four fully connected layers. The input shape of the image is (128,128,3). The filter number
of four convolutional layers are 16,32,64,128 respectively where the filter size is set to (3,3). In the max-
pooling layer, we have set the pool size (2,2). In the fully connected layers, the number of units is 64,32,16,4
respectively. The total number of parameters of the proposed model is 3,95,092 which takes around 1.51 MB.

3. RESULT AND DISCUSSION
In this section, we have elaborately explained our model performance along with several curves and

classification reports. The result using user input and comparison with other existing work is also shown here.
Finally, we explained why we preferred our model as a lightweight model and how its performance varies with
others.

3.1. Performance evaluation
The performance of the proposed system has been measured based on four modules: training and loss

curve, confusion matrix, classification report, and receiver operating characteristic (ROC) curve [23].

3.1.1. Training and loss curve
The training and loss curve represents how model performances vary along with the epochs. In these

curves, the y-axis represents the values of training or loss performance and the x-axis shows the number of
epochs. The curve of model accuracy and model loss has been shown in Figure 6.

TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 3, June 2025: 682–693
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Figure 6. Model accuracy and loss curve

The model accuracy curve shows two lines one is yellow another is blue. The yellow line shows the
validation accuracy whereas the blue line shows the performance metric of training accuracy. The total number
of epochs is 10 which is shown in the x-axis. The values of training and validation accuracy at 1st epoch are
0.518 and 0.901. At the 10th epoch, the values of training and validation accuracy are 0.88 and 1.00.

Similarly, The model loss curve shows two lines one is yellow another is blue. The yellow line shows
the validation loss whereas the blue line shows the values of training loss. The total number of epochs is 10
which is shown in the x-axis. The values of training and validation loss at 1st epoch are 0.789 and 0.3882. At
the 10th epoch, the values of training and validation loss are 0.19 and 2.9299e-04 (closest to zero).

3.1.2. Classification report

A classification report, which is usually produced in Python using tools like scikit-learn, is a brief
overview of several assessment criteria for a classification model [23]. It offers the most important performance
indicators for every class in the categorization issue. Table 3 shows the classification report of the proposed
system. This table shows the value of precision, recall, and f1-score for the four different classes open, close,
yawn, and no-yawn. The values of precision, recall, and F1-score for the close class are 0.94, 0.96, and 0.95
respectively. Similarly, for the open class, these values are 0.98, 0.97 and 0.96; the No-yawn class consists of
the values of 0.96, 0.98, and 0.97; and the last class Yawn has the values of 0.95, 0.92 and 0.93 respectively
(see Table 3).

Table 3. Classification report of the proposed system
Class name Precision Recall F1-score
Close 0.94 0.96 0.95
Open 0.98 0.97 0.96
No-yawn 0.96 0.98 0.97
Yawn 0.95 0.92 0.93

3.1.3. ROC curve

ROC stands for receiver operating characteristics curve plots the relationship between True positive
and False positive rates [24], [25]. The true positive rate is shown on the y-axis whereas the false positive rate
is shown on the x-axis. The ROC curve of the proposed system has been shown in Figure 7.

This figure shows area = 1.00. It means that it has returned a perfect classification. In other words, we
can say that the proposed model perfectly classified the true positive and false positive instances.

Convolutional neural network-based real-time drowsy driver detection for accident prevention (Nippon Datta)
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Figure 7. ROC curve of the proposed system

3.2. Result using random input
We have several user inputs from outside and inside of our dataset. The result using several user inputs

is shown in Figure 8. This figure has four different input results indicated by Figures 8(a) to (d). In the case of
Figure 8(a) the prediction value shows that the no-yawn class has higher values than others, so the prediction
is no-yawn. Similarly for the input Figure 8(b) it predicts close, Figure 8(c) it returns open, and Figure 8(d) it
returns yawn.
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Figure 8. Prediction using several user inputs: (a) no-yawn, (b) close, (c) open, and (d) yawn

3.3. Comparison with existing methods
As drowsy driver detection is an important issue in reducing road accidents so many researchers

already worked on this topic. In this section, we have compared our proposed system with some other previous
work. Table 4 shows the comparison with other existing research.

Table 4. Comparison with other existing works
Article Method Features Dataset Accuracy (%)
Knapik and Cyganek [7] Cold and hot voxels Mouth Own dataset 87
Kiashari et al. [8] SVM and KNN Respiration Thermal image dataset 83
You et al. [11] 3D-deep CNN Facial features NTHUDDD dataset 73.9
Moujahid et al. [10] Non-linear SVM Eye, mouth, and head NTHUDDD dataset 79.84
Our study CNN Yawn and eye Kaggle dataset 96.6

Knapik and Cyganek [7] proposed a cold and hot voxels-based approach to detect drowsiness using
their dataset. They have taken the features from the mouth and achieved an accuracy of 87%. Kiashari et al. [8]
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introduced a drowsy driver detection system based on SVM and KNN. They have used a thermal image dataset
and achieved an accuracy of 83%. You et al. [11] illustrated an approach based on 3d deep CNN where they
used facial features to detect driver drowsiness. They used the NTHUDDD dataset and achieved an accuracy of
79.84%. Moujahid et al. [10] proposed a non-linear SVM to detect drowsy drivers. They used the NTHUDDD
dataset and as features, they took eye, mouth, and head. The accuracy of their proposed model is 79.84%.
Finally, the last row of the table shows the result of our proposed lightweight CNN where we have used the
Kaggle dataset, and as the features we have taken yawn and eye. The accuracy of our proposed model is 96.6%.

3.4. Comparison with other model
The proposed lightweight CNN model has been compared with other existing models in terms of

accuracy, number of parameters, and memory requirement where the proposed model has shown a satisfactory
result. Table 5 shows the comparison with other models.

Table 5. Comparison with other model
No Model name Total parameters Memory requirement (MB) Accuracy (%)
1 VGG16 14,780,868 56.38 83
2 MobileNetV2 2,751,438 10.50 95
3 ResNet50 23,850,500 90.98 63
4 VGG19 20,090,564 76.64 77
5 DenseNet121 7,169,220 27.35 93.45
6 Our study 395,092 1.51 96.6

We have trained the dataset using several common existing models named VGG16, MobileNetV2,
ResNet50, VGG19, and DenseNet121. Among this model, ResNet50 is the most-weighted model which has
around 23 million parameters and a required memory size is 90.98 MB. Using ResNet50 we have achieved
63% accuracy. The second high-weighted model is VGG19 which has 20 million parameters and memory
requirement is 76.64 MB. The accuracy using VGG19 is 77%. The third high-weighted model is VGG16, it
has 14 million parameters and the accuracy is 83%. DenseNet121 and MobileNetV2 have fewer parameters
compared to above mentioned three models. DenseNet121 has 7 million parameters and took a memory of 27
MB for training. The accuracy it shows is 93.45%. Among all pre-trained models MobileNetV2 performed
very well, it has only 2 Million parameters and the required memory size is 10.50MB which shows an accuracy
of 95%. Finally, the last one is our proposed lightweight CNN model that has around 4 lakhs (0.4 Million)
parameters and memory requirement is 1.51 MB with a satisfactory accuracy of 96.6%.

4. CONCLUSION
In this paper, we have presented a CNN-based real-time drowsy driver detection system designed

to enhance road safety by identifying drowsiness and microsleep episodes with high accuracy. Our proposed
lightweight CNN architecture demonstrates superior performance, achieving an accuracy of 96.6% while main-
taining efficiency with only 0.4 million parameters and a minimal memory requirement of 1.51 MB. This makes
it particularly suitable for deployment in resource-constrained environments, such as Android applications. The
results from our comparative analysis show that our model outperforms other popular CNN architectures, in-
cluding VGG16, MobileNetV2, ResNet50, and DenseNet121, in both accuracy and resource efficiency. Future
work includes expanding the dataset with diverse driver demographics and conditions for better generalizability
and integrating sensor data like heart rate and steering patterns to enhance fatigue detection accuracy.
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