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 Various types of research have been developed to detect beef adulteration, 

but the accuracy and reliability of these results still require improvement. 

This study proposes designing a highly precise redundant electronic nose 

system using an optimized convolutional neural network (CNN) method to 

detect adulterated beef mixed with pork. As baselines, other classifiers are 

also utilized, namely the decision tree (DT), K-nearest neighbor (KNN), 

artificial neural network (ANN), and support vector machine (SVM). 

Several data preprocessing methods are employed to increase prediction 

accuracy, namely feature selection, principal component analysis (PCA), and 

time series smoothing. The weight of each data sample was 100 g with 15 

classes of pork and beef mixing ratios of 0%, 0.1%, 0.5%, 1%, 5%, 10%, 

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% pork. With the 

single-layer sensor configuration, the average CNN classification success 

rates were 97.15%, 96.29%, and 99.64% for layers 1, 2, and 3, respectively. 

In addition, from the combination of the three layers, a prediction results of 

99.72% was obtained. Thus, a redundant gas sensor array configuration can 

improve the classification results. In addition, the relatively high accuracy of 

the optimized CNN provides a convincing alternative for identifying 

possible beef adulteration. 

Keywords: 

Adulterated beef 

Convolutional neural network 

Machine learning 

Pork adulteration 

Redundant gas sensor 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Ardani Cesario Zuhri 

Research Center for Process and Manufacturing Industry Technology 

Research Organization for Energy and Manufacture, National Research and Innovation Agency 

Jakarta, Indonesia 

Email: arda004@brin.go.id 

 

 

1. INTRODUCTION 

Beef is a high-quality food that contains nutrients, niacin, vitamin B, iron, and a complete source of 

protein that can improve health, growth, muscle building, cells, and hormones in the human body [1]. 

However, adulterated beef (with pork) is still commonly found in the markets, such as in Indonesia and 

Korea [2], [3]. The practice of adulteration involves mixing and blending meat from different species to 

obtain excessive profits at a lower cost [4]. The impact of this meat fraud is very harmful to consumers, 

especially Muslims who prioritize halal food, and it seriously restricts the progress of local meat businesses 

[5]. Therefore, an instrument specifically designed to detect beef adulteration is urgently needed. 

Several scientific instruments and methods for detecting beef adulteration have been developed, 

including gas chromatography (GC) and mass spectrometry (MS) [6], hyperspectral imaging (HSI) [7], 

https://creativecommons.org/licenses/by-sa/4.0/
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polymerase chain reaction (PCR) technology [8], and fourier transform infrared (FT-IR) spectroscopy [9]. 

However, some research instruments and methods require further consideration, such as specific laboratory 

capabilities, test samples damaged by destructive testing, expensive costs, and extended test times [10]. 

Therefore, a scientific instrument and method that can detect beef adulteration quickly, cheaply, precisely, 

and reliably is needed using an electronic nose (e-nose). The application of e-nose with aroma recognition 

has been tested in the automotive field to detect the concentration level of vehicle exhaust gas [11], in the 

health sector to detect bacterial infections [12], and in the food sector to detect meat freshness [13]. The 

application of e-nose has also successfully detected adulteration in lamb and duck meat using a combination 

of backpropagation neural network (BPNN) and support vector machine (SVM), obtaining an accuracy of 

98.59% [14]. In the preceding study, the E-nose successfully detects pork adulteration by integrating gas and 

colorimetric sensors with the result of 91.27% accuracy in training and 87.5% in prediction [15]. The e-nose 

application successfully detected pork adulteration with beef for halal authentication using nine different 

sensors and seven classes of meat mixture proportions. In addition, it used an optimized SVM recognition 

model with an accuracy of 98.1% [16]. 

One of the main components of the e-nose is the use of multiple gas sensors. However, the gas 

sensor suite has several disadvantages compared with other sensors, including low sensitivity to low gas 

concentrations, poor selectivity, sensor aging, leading to errors, and data corruption [17]. Several options to 

mitigate the drawbacks of sensor replacements have been proposed, including fault correction [18], fault 

detection [19], or classification algorithmic [20]. Another alternative to prevent damage or failure of sensor 

readings is to use redundant information from the sensor array [21], [22]. By using redundant information 

from multiple sensors, the e-nose system can reduce the risk of single sensor errors and provide greater 

certainty to the decisions made, thus improving the ability to identify and detect beef adulteration. 

In beef adulteration detection, several researches have also shown that machine learning, particularly 

the convolutional neural network (CNN) architecture, has an excellent potential to improve model accuracy. 

The CNN algorithm can reduce noise in extensive datasets through image and spectral data, where new 

features are generated with lower entropy after convolution [23]. CNNs have been widely used in image 

recognition using 2D convolution [24]-[27], and have also been successfully applied to time series domains 

using 1D convolution [28]-[31]. CNN was also successfully applied to identify milk powder counterfeiting 

with an average accuracy of 97.8% [32] and honey counterfeiting with an average accuracy of 100% for a 

model with 32 kernels and a 7×1 filter size [33]. 

This study proposes an e-nose design with redundant gas sensors to detect beef and pork 

adulteration using an optimized CNN algorithm. In this study, the decision tree (DT), K-nearest neighbor 

(KNN), artificial neural network (ANN), and SVM methods were also used to compare the accuracy results 

of several other classifications. The research questions addressed by this study consists of the following: i) is 

the use of redundant layers of a gas sensor array capable of improving classification accuracy?; ii) is a one-

dimensional (1D) CNN suitable for categorizing a dataset of gas emissions from mixed beef and pork; and 

iii) what are the most influential sensor types for identifying adulterated beef?. Furthermore, the primary 

contributions of our proposed approach comprise of: i) constructing redundant layers of the gas sensor array, 

where each layer consists of 8 gas sensor; ii) demonstrating the suitability of an optimized CNN for 

categorizing a dataset of gas emissions from mixed beef and pork; iii) identifying the most influential sensor 

types for identifying adulterated beef. Combining the e-nose design and the developed classification model 

will result in a cheap, practical, and precise system for detecting beef adulterated with pork. 

 

 

2. METHOD  

2.1.  Material sample preparation and electronic nose design 

The research objects in this test were pork and beef. Both types of meat were obtained from the 

Butchery section at Serpong, South Tangerang, Indonesia. The meat was stored in a freezer at 17 °C prior to 

testing. The meat samples (Figures 1(a) and (b)) weighed 100 g with 15 classes of pork and beef mixing 

ratios, consisting of 0% (0:100), 0.1% (0.1:99.9), 0.5% (0.5:99.5), 1% (1:99), 5% (5:95), 10% (10:90), 20% 

(20:80), 30% (30:70), 40% (40:60), 50% (50:50), 60% (60:40), 70% (70:30), 80% (80:20), 90% (90:10), and 

100% (100:0). The mixing ratio was set to the least possible mixing ratio of 0.1 g pork to ensure that the 

system could detect relatively little pork in the beef. 

The meat samples were placed in a redundant gas sensor array chamber. Gases generated by the 

samples produce odors that are detected by gas sensors. The resistance levels of gas sensors change 

depending on the amount of gases detected. Resistance values of gas sensors are converted into voltage data 

and then sent to Raspberry Pi 4B using analog-to-digital converter (ADC) modules. The Raspberry data will 

be processed utilizing Python programming language. Figure 1(c) shows the design of the sensor chamber, 

which has a length, width, and height of 350, 250, and 250 mm, respectively.  
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The gas sensor is a semiconductor manufactured by Winsen Electronics. The redundant gas sensors 

comprise eight different gas sensors with three replicas and one temperature and humidity sensor, as shown 

in Table 1. Redundant gas sensors ensure that adulteration detection systems can function correctly and 

precisely even if some sensors are less sensitive or damaged and can improve classification accuracy by 

removing noncontributing or irrelevant features [34], [35]. There are three layers, each with eight different 

gas sensors. The topmost layer in the chamber box is layer 1, followed by layer 2 below it, and layer 3 at the 

bottom of the arrangement. Each layer was designed with a distinct diameter to optimize odor emission from 

beef, ensuring detection by all sensors inside each layer. The diameters of the first, second, and third layers 

were 50, 95, and 140 mm, respectively. The spacing between each layer was 30 mm, and the distance 

between the meat and closest layer 3 was 150 mm. 
 

 

 

 

(a) 

 

 
(b) (c) 

 

Figure 1. Preparation of test samples; (a) pork, (b) beef, and (c) design of the sensor chamber 
 

 

Table 1. Redundant gas sensor arrays 
Layer 1 Layer 2 Layer 3 

Sensor description 
No Initial sensor No Initial sensor No Initial sensor 

1 MQ2_1 9 MQ2_2 17 MQ2_3 MQ2 detects smoke, hydrogen, LPG, alcohol, and methane 
2 MQ4_1 10 MQ4_2 18 MQ4_3 MQ4 detects natural gas and methane (CH4) 

3 MQ6_1 11 MQ6_2 19 MQ6_3 MQ6 detects iso-butane, propane, and LPG 

4 MQ9_1 12 MQ9_2 20 MQ9_3 MQ9 detects CO, propane, and methane 
5 MQ135_1 13 MQ135_2 21 MQ135_3 MQ135 detects CO2, benzene, NH3, NOx, and alcohol 

6 MQ136_1 14 MQ136_2 22 MQ136_3 MQ136 detects H2S, hydrogen, CO, and methane 

7 MQ137_1 15 MQ137_2 23 MQ137_3 MQ137 detects ammonia, hydrogen, and ethanol  
8 MQ138_1 16 MQ138_2 24 MQ138_3 MQ138 detects aromatic and other organic solvents 

 

 

The gas sensor was first turned on to warm up for 120 min, and the chamber cover was then opened 

for cleaning to obtain clean air. For sample preparation, meats were moved out from the freezer and left at 

room temperature for 120 min. The test parameters were as follows: initial data collection for clean air for  

60 min; data collection for each class of samples for 60 min; sampling interval for 1 s; and gas and air 

cleaning time for 2 min. The first and second configurations use single-sensor layer data points and three-

sensor layer data points, respectively. Each 10 data points was averaged together to reduce variability and the 

effect of outliers or extreme values. The first configuration with eight gas sensors on a single layer has  

8 sensors×60 min×6 points/minutes×15 classes=43,200 data points. The second configuration with three 

layers has 43,200×3 layers=129,600 data points. Thus, the number of samples was 43,200 data points/8 

sensors or 129,600 data points/24 sensors, which is equal to 5,400 records.  

 

2.2.  Feature selection 

Feature selection is a dimension reduction technique that reduces feature complexity by selecting a 

subset of the original features that are distinguishable from each existing classes [36]. These relevant features 

lead to good learning in terms of accuracy, computational cost, and model interpretability. In this study, 

feature selection combined the filter and wrapper methods. In the filter method, the preprocessing step is not 

influenced by the choice of a predictor. The F-test, mutual information (MI), and pearson’s correlation 

coefficient (PCC) are utilized for filtration methods. The F-test examines the value of variance between 

groups compared with that within groups [37]. The information gain (IG) is computed through the MI 

between features Xi and class Y to examine the dependency between features and labels [28]. Meanwhile, the 

Pearson correlation coefficient determines the linear correlation between two variables by computing the 
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ratio between their covariances and the product of their standard deviations [38]. The wrapper method 

determines the most influential features using the prediction results from the classifier. The proposed model 

is relatively reliable because of its ensemble capability in combining prediction results from several data 

subsets [39]. Next, selected features are ordered by their relevance according to the number of rankings from 

each selected feature selection method, which is usually called the Borda count [40].  

 

2.3.  Principal component analysis  

In addition to feature selection, feature extraction is another dimensional reduction method that 

combines the fractions of features into other sets of features or principal components in principal component 

analysis (PCA) [41]. PCA projects features into multiple dimensions via orthogonal transformations that 

preserve maximum variance [42]. In addition, this method is renowned for data reduction without forfeiting 

prominent information [43]. The PCA group data covariance was determined by ranking the eigenvalues 

from highest to lowest. The covariance value of the data matrix with the highest eigenvalue aligns all data 

with the highest approximation [44]. 

 

2.4.  Convolutional neural network for time-series prediction 

The data produced by the sensor are in the form of a time series with a specific fluctuating pattern. 

Therefore, this study employs classification techniques to capture time series patterns. Recent studies have 

indicated that CNN, especially 1D CNNs, have yielded outstanding results for time series domains [28]-[31]. 

The architecture of the 1D CNN for time series data from sensor readings is shown in Figure 2. It consist of 

an input layer, two 1D convolutional layers, one max pooling layer, one flattening layer, one completely 

connected hidden layer, and a multiclass output layer. The input data of the CNN have a 3D form consisting 

of several samples, time steps, and features. The features consist of eight sensors for each layer in the three-

layer arrangement. The proposed CNN model employs 1D convolution kernels that stride the time series to 

extract temporal features. Out of these features, their values of a specific size are pooled to obtain a summary 

of each group, such as the maximum value for each group. The proposed pooling reduces the number of 

features and noise. Finally, the pooled results are flattened into a 1D array before being fed into the dense 

neural network layer.  
 

 

 
 

Figure 2. A 1D CNN classification framework based on olfactory sensor data 
 

 

This study proposes an optimum length of time steps that determines the output of a time series. The 

importance of specifying the time step size in a time series was previously described in [45], [46]. The 

experimentation of various lengths of time steps is made possible by CNN because it requires at least 2D 

input shapes for each sample, hence 3D shapes in total. In addition, the number of hidden nodes in the 

convolutional layers is optimized via a grid search of possible combinations of hidden node numbers. The 

experiment was implemented using Python code, as described in [47], and ran in the Google Colaboratory 

environment, which hosts the Jupyter Notebook service. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Gas sensor dataset 

The e-nose sensors generate a ratio between the initial resistance and measured resistance (Rs/Ro) 

data of as many as 5,400 records in 15 classes. Thus, each class comprises 360 samples. Figure 3 shows the 

different ranges of values for each class of the time series, although there are some overlaps among the data 

from different sensors. Figure 3(a) indicates that the sensors at the 1st layer, which was placed furthest from 

the gas source, exhibit more stable patterns, whereas one sensor (MQ9) at the 2nd layer exhibits a fluctuating 



TELKOMNIKA Telecommun Comput El Control   

 

Adulterated beef detection with redundant gas sensor using optimized … (Ardani Cesario Zuhri) 

643 

pattern Figure 3(b). In addition, most sensors in the third layer, which is placed closest to the gas source 

Figure 3(c), exhibit fluctuating patterns. Although the sensor patterns in Figure 3 appear to overlap, their 

differences among classes are better than those of the other two layers.  

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 3. Patterns of time series sensor data for; (a) layer 1, (b) layer 2, and (c) layer 3 
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3.2.  Redundant gas sensor selection 

Based on the rank of scores from each feature selection method, the most selected sensors in layer 1, 

in ascending order, are: {MQ9_1, MQ137_1, MQ2_1, MQ4_1, MQ6_1, MQ135_1, MQ136_1, and 

MQ138_1}, while the most selected sensors for layer 2 and layer 3 are {MQ138_2, MQ137_2, MQ2_2, 

MQ4_2, MQ6_2, MQ135_2, MQ9_2, and MQ136_2}, and {MQ138_3, MQ4_3, MQ137_3, MQ136_3, 

MQ6_3, MQ9_3, MQ2_3, and MQ135_3}. Table 2 lists the ranks of each method at each layer and their total 

counts. When the three layers are used at once, which means 24 features in total, the top five most selected 

sensors are MQ138_3, MQ137_3, MQ137_2, MQ137_1, and MQ136_1. By contrast, MQ9_2, MQ136_2, 

MQ135_3, MQ4_2, and MQ6_2 were the least selected sensors. In addition, among all classifiers, their 

prediction accuracy tended to increase starting from using 40% of features, or approximately three features 

for the first, second, and third layers, and approximately ten features for the combination of all layers. 

Specifically, based on the cross-validation results, the most optimal percentage of selected features was 90% 

for layers 1 and 2 (or 0.9×8≈7 features), 80% for layer 3 (or 0.8×8≈6 features), and 50% for the combination 

of all layers (or 0.5×24≈12 features). 

 

 

Table 2. Ranking of each feature in layers 1, 2, and 3 

Methods 
MQ2 MQ4 MQ6 MQ9 MQ135 MQ136 MQ137 MQ138 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

F-Score 1 5 1 3 4 7 6 6 8 7 1 4 5 2 2 2 3 3 4 7 5 8 8 6 
MI 8 6 6 6 7 5 2 2 2 3 3 1 4 8 3 5 5 7 7 4 4 1 1 8 

PCC 1 6 1 5 2 7 3 1 5 6 4 6 2 3 3 8 5 2 7 8 8 4 7 4 

RF 8 4 3 4 5 7 7 8 1 6 7 4 5 3 2 1 1 6 2 2 5 3 6 8 
Total 18 21 11 18 18 26 18 17 16 22 15 15 16 16 10 16 14 18 20 21 22 16 22 26 

 

 

3.3.  Data dimensional reduction 

Features were extracted using PCA for several principal components (PCs). The eigenvalues 

presented in Table 3 denote that principal component 1 (PC1) alone contributed 97.26% of the variance. The 

addition of PC1 and PC2 results in more than 99% of the cumulative variance, which is adequate to represent 

all eight features. The variance threshold for PC retention is about 70-85% to guarantee that PCs can retain 

most of the information of the original variables [48], [49]. In addition, Figure 4 shows the clustering of data 

based on the number of PCs. Figure 4(a) shows two PCs in layer 1. All data in the same class are relatively 

grouped and Figure 4(b) shows three PCs of different classes. 

 

 

Table 3. Eigenvalues and proportions of variance in PCA at layer 1 

Calculation 
Components 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Eigenvalue 77.960 0.2052 0.0097 0.0024 0.0009 0.0005 0.0002 0.0002 

Proportion of variance 97269% 2560% 0.12% 0.03% 0.01% 0.01% 0.00% 0.00% 
Cumulative 97269% 99830% 99951% 99980% 99992% 99997% 99999% 100% 

 

 

High prediction accuracy of all classifiers can be achieved using a certain number of PCs. The first 

layer achieved the best accuracy using 90% of its eight features, and the second and third layers achieved the 

best accuracy using 80% of their eight features. The combination of all layers required 50% of its 24 features 

to yield the best performance. 

 

3.4.  Smoothing 

Smoothing is a technique used to reduce variations in time series data or overcome the presence of 

outliers [50]. In this study, the simple moving average, which averages a predecided number of successive 

data points with equal weights, is applied to smooth the time series. Several options are provided to obtain 

the optimal length of the averaged points: odd numbers running from a short to an arbitrarily long number, 

namely 3 to 45. Odd numbers were chosen to be evenly divided to their median left and right. The classifiers 

were then run against the smoothed data of those lengths, and the best average classification performance for 

that length was obtained. The cross-validation results indicate that 37 is the optimal length for the DT, 31 for 

the KNN and ANN, 25 for the SVM, and 17 for the CNN. 
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(a) 

 

 
(b) 

 

Figure 4. Data grouping based on the number of principal components; (a) data grouping using two PCs and 

(b) data grouping using three PCs 

 

 

3.5.  Classifier optimization 

3.5.1. Convolutional neural network 

Several parameters in the CNN must be optimized to obtain the best performance. Here, one of them 

is the length of the sequence steps of a time series. As shown in Figure 5, the CNN sample was constructed 

from the original data into 3D data, with each sample consisting of sensors with specific sequence steps. 

Short steps may not capture the time series pattern; however, long steps may lose a specific pattern. Thus, 

several length options are provided, and the CNN is run against the time-series data of that length. Among 

the length options, namely 15 to 330 points with a multiple of 15, the length that best performs the CNN is 

150 (Figure 6). Accordingly, from the total 5,400 datasets of 15 classes, the previous 360 data points are now 

210 time-series data per class. 

In addition, other parameters to optimize include the number of hidden nodes (called filters) in the 

convolution layer and the number of nodes in the dense layer. Because there are two convolution layers in 

this experimental setup, both layers are given the same initial number of nodes, starting from 16 to 200 with a 

multiple of 16. Out of these numbers, cross-validation was employed to obtain the optimal combination of 

both layers, which yielded the highest classification accuracy. The best performance was obtained by 

combining 176 and 128 nodes in layers 1 and 2, respectively. Similarly, another cross-validation was 

performed to obtain the best number of nodes in the dense layer. Given an initial number of 10 to 200, a 

multiple of 10 and 150 is the best node number for the dense layer (Figure 6). 
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Figure 5. Time series dataset with each sample comprising sensor data of a specific length 

 

 

 
 

Figure 6. Optimal length of time series sequence 

 

  

The final parameters of the CNN to be optimized are the kernel size, pooling kernel size, and the 

percentage of dropout nodes. As stated in [51], smaller kernel sizes are better choices than larger sizes 

because they better retain the locality of the extracted features. Similarly, [52] indicated that the size of the 

pooling kernel should always be small to avoid significant information loss in feature quality. During the 

experiment, cross-validation was used to select the size of the kernel and the maximum pooling kernel for the 

classifiers applied at layers 1, 2, and 3. The initial sizes were 2, 3, 4, and 5. The best result among these 

values was obtained using the kernel and maximum pooling with a size of 2. 

Similarly, the optimal percentage of dropout nodes was obtained via cross-validation. The dropout 

technique can prevent overfitting and efficiently approximate a combination of different neural network 

architectures [53]. For CNNs, [54] indicated that 10% and 20% dropouts are preferable. In this experiment, 

when the dropouts are applied after the convolutional and dense layers, their initial values are designated as 

10%, 20%, 30%, 40%, and 50%. It turns out that 10% is the optimal dropout value. 

  

3.5.2. Baseline classifiers 

This study uses simple classifiers to compare the performance of CNNs, namely the DT and KNN, 

as well as the more sophisticated ones, namely the ANN and SVM. The parameters of these classifiers were 

also optimized by cross-validation on the training dataset. For the DT, the optimal depth of the tree was 

determined by providing initial values of 3-20. The depth at which the best performance was achieved was 

11. Similarly, the KNN’s best number of neighbors is one out of the given numbers from 1 to 10.  

The ANN, which uses two hidden layers in this experiment, initially provides several nodes with a 

range of 16 to 200 with a multiple of 16. The number of nodes suitable for both hidden layers was 128. For 
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the number of epochs, the optimal values of the ANN and CNN determined by cross-validation were 180 and 

220, respectively. The SVM hyperparameters are constant C and gamma, which control the optimal fit of the 

classification boundary. The C and gamma parameters were selected from several possible combinations, 

such as {0.1, 1, 5, 10, 50, 100, 500, 1000} and {0.05, 0.1, 0.5, 1, 2}, respectively. The optimal combinations 

of both values are 500 and 1. 

 

3.6.  Classifier performance 

The five classifiers employed during the experiment, DT, KNN, ANN, SVM, and CNN, were run 

against eight features in one of three layers; the average values of the eight features in all layers, the median 

values of those features, or the total of 24 features in all layers. Table 4 shows the classification accuracy of 

each classifier using the original features, selected features, extracted features as PCs, and smoothed features. 

In addition, the percentage of data used for training and testing was 10% and 90%. This relatively small 

number of training samples was selected to allow easy determination of difference in accuracy. The 

performance accuracies of predictors with that training number were greater than 85%, and some even 

reached 100%. 

 

 

Table 4. Classifier performances for different features and layer configurations 
Classifiers Feature Layer 1 (%) Layer 2 (%) Layer 3 (%) Layers 1, 2, and 3 (%) 

DT Original features 93.21 92.16 98.75 97.9 
 Feature selection 95.25 91.79 98.17 98.46 
 PCA 97.9 90.91 98.91 98.85 
 Smoothing 96.21 97.1 99.29 99.68 

KNN Original features 98.25 96.67 99.98 99.98 
 Feature selection 98 96.81 99.96 99.96 
 PCA 97.9 92.1 99.88 100 
 Smoothing 99.46 99.24 99.82 99.93 

ANN Original features 91.46 94.03 99.79 99.96 
 Feature selection 93.13 94.01 99.36 99.88 
 PCA 93.13 94.01 99.36 99.88 
 Smoothing 92.19 96.52 100 100 

SVM Original features 99.59 97.84 99.9 99.98 
 Feature selection 98.99 97.94 99.94 99.98 
 PCA 99.53 97.1 99.9 99.98 
 Smoothing 99.58 99.47 100 100 

CNN Original features 99.61 99.54 100 100 
 Feature selection 99.75 99.79 100 100 
 PCA 100 99.37 99.79 99.89 

  Smoothing 99.92 99.5 100 100 

 

 

CNN outperformed the other classifiers with an accuracy of 99.82%, followed closely by the SVM 

with an accuracy of 99.36%. As a simple classifier, the KNN also yields excellent results with 98.62% 

accuracy, which is greater than the performance of the ANN and DT with accuracy values of 96.67% and 

96.53%, respectively. Based on this result, we assume that a 1D CNN is suitable for a time-series based 

sensor dataset.  

However, data preprocessing and dimensionality reduction yield mixed results. Smoothing increased 

the performance of most classifiers with an average accuracy of 98.90%. In contrast, features selected by 

feature selection methods and extracted into PCs by PCA can yield mixed results. For the DT and ANN, PCA 

increased the accuracy more than the original features from 95.50% and 96.31% to 96.64% and 96.59%. 

Similarly, feature selection outperformed the original features in the DT, ANN, and CNN with accuracy 

values of 95.92%, 96.59%, and 99.89%. 

In addition, sensor redundancy in multilayer arrangement provides robust performance. The average 

score of all classifiers in all layers was better than that of a single layer for all feature arrangements, such as 

original, selected, extracted, and smoothed arrangements. The average prediction results for the combination 

of 3 layers is 99.72%, while those of layers 1, 2, and 3 are 97.15%, 96.29%, and 99.64%, respectively. Thus, 

the presence of sensors in all layers improved the discriminative ability in the classification process 

compared to the presence of only a set of sensors in a single layer. 

The performance of our e-nose using a redundant array of sensors, with an accuracy average of 

99.72%, has been in par and may exceed the performance of previous works in similar fields, as shown in 

Table 5. Some of these methods use e-noses, whereas others use near-infrared spectroscopy or colorimetric 

sensors coupled with machine learning algorithms. Thus, the proposed e-nose method exhibits improved 

classification accuracy.  
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Table 5. Previous studies on meat adulteration detection 
Field Method Accuracy (%) Ref 

Adulterated lamb with duck e-nose and near-infrared (NIR) spectroscopy using BPNN and SVM 98.59 [14] 
Adulterated beef with pork ensemble learning using KNN 98.33 [55] 

Adulterated beef with pork e-nose using SVM 98.1 [16] 

Adulterated lamb with pork Visible NIR using partial least squares discriminant analysis (PLSDA) 97.3 [56] 
Adulterated beef with pork Visible NIR using SVM, DT 97 [57] 

Adulterated beef with pork e-nose using SVM 95.71 [58] 

Adulterated beef with pork Colorimetric sensors using ELM & Fisher LDA 91.27 [15] 

 

 

3.7.  Discussion 

The obtained data set of 8 sensors, 3 layers, and 15 classes shows a distinguishable pattern among 

classes from at least one of the sensors, which allows for accurate categorization. Feature selection and PCA 

help reduce the number of features used during classification. Feature selection can also identify the most 

important features, namely the MQ138, MQ 137, and MQ136. Among the preprocessing techniques, 

smoothing and feature selection provided better classification results than the use of the original dataset. 

Among the classifiers, the CNN yielded better accuracy than the other classifiers. Our hypothesis regarding 

redundant layers was supported by the best classification results for all layers compared to each layer  

(Table 4). 

A previous study of e-nose to detect adulteration of lamb and duck meat using a combination of a 

BPNN and SVM, obtaining an accuracy of 98.6% [14], while the one to detect pork adulteration with beef 

using optimized SVM obtains an accuracy of 98.1% [16]. In terms of classification performance, this study 

achieved an average performance of all classifiers of 99.7% on all sensor layers. In addition, each layer 

obtained accuracy values of 97.15%, 96.29%, and 99.64%, respectively. On our dataset, the optimized SVM 

performed quite well, as it could reach an accuracy of 99.36%, but it still was close behind the optimized 

CNN, which yielded a prediction accuracy of 99.82%. The strength of the proposed approach lies in the use 

of a combination of layers, as there are more pools of sensors to choose from compared to a single layer. The 

use of an optimized 1D CNN for the time-series dataset demonstrated strong performance. The experimental 

setup of our approach still has limitations, as we must clean the chamber manually before measuring each 

sample. There are unexpected results that we encounter, such as the accuracy of layer 2, which lies between 

two other layers, being less than that of layer 1, which is placed in the furthest position.  

In this study, redundant layers of a gas sensor were employed to detect the adulteration of beef with 

pork using an optimized CNN. Sensor redundancy reduces the risk of single sensor errors and improves the 

ability to detect beef adulteration. In addition, this study confirmed the feasibility of a 1D CNN for time-

series datasets, especially for gas sensors. In future, the layer placement scheme should be experimentally re-

arranged so that all layers can contribute more optimally. The study can also be expanded using different 

types of adulterated objects or by designing a more portable system for use on a larger scale. 

  

 

4. CONCLUSION 

This study proposes a redundant gas sensor array for robust adulterated beef detection using a 1D 

CNN. The sensor chamber has 3 layers, and each layer contains 8 different gas sensors. The meat samples 

were categorized into 15 mixing classes of pork and beef ratios ranging from 0% to 100%. The dataset 

contains 5,400 samples and includes 360 samples per class. CNN was proposed as the primary classification 

method because of its ability to capture time-series patterns from sensor readings. The parameters of each 

classifier were optimized by cross-validation of the training data. Feature selection, feature extraction, and 

smoothing were performed to determine their effects on the classification results.  

The test results demonstrate that the CNN yielded a prediction accuracy of 99.82%. This result is 

higher than that of other classifiers for data with selected, extracted, and smoothed features. The next best 

classifier was SVM with an accuracy of 99.36%, followed by KNN with an accuracy of 98.62%; ANN with 

an accuracy of 96.67%; and DT with an accuracy of 96.53%. In addition, smoothing can improve accuracy 

compared to the original feature. However, feature selection and PCA can only improve a few classifiers. 

Nevertheless, feature selection information can be obtained regarding the most influential sensor types, such 

as MQ138_3, MQ137_3, MQ137_2, MQ137_1, and MQ136_1. Similarly, a few PCs can represent almost all 

features. In addition, combining three layers provides better classification results than a single layer in terms 

of redundant sensor arrays. For a single-layer sensor configuration, the average CNN classification success 

rates were 97.15%, 96.29%, and 99.64% for layers 1, 2, and 3, respectively. In addition, for the combination 

of the three layers, the prediction results improved to 99.72%.  
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In future work, the placement of sensor layers should be further analyzed to optimize the 

contributions of all layers. The use of other objects can also expand the applicability of the proposed system. 

In addition, to increase the use of this halal meat detection system, it is crucial to design a portable system for 

the public. 
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