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 Steganalysis aims to detect hidden messages within digital media, presenting 

a significant challenge in the field of information security. This paper 

introduces an adversarial-robust steganalysis system leveraging adversarial 

training and the powerful feature extraction capabilities of EfficientNet. We 

utilize EfficientNet to extract robust features from images, which are 

subsequently classified by a dense neural network to distinguish between 

steganographic and non-steganographic content. To enhance the system’s 

resilience against adversarial attacks, we implement a custom adversarial 

training loop that generates adversarial examples using the fast gradient sign 

method (FGSM) and integrates these examples into the training process. Our 

results demonstrate that the proposed system not only achieves high accuracy 

in detecting steganographic content but also maintains robustness against 

adversarial perturbations. This dual approach of leveraging state-of-the-art 

deep learning architectures and adversarial training provides a significant 

advancement in the field of steganalysis, ensuring more reliable detection of 

hidden messages in digital images. 
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1. INTRODUCTION 

In today’s digital age, ensuring the security of information transmission has become a critical concern. 

Steganography, the practice of hiding secret messages within digital media, poses a unique challenge as it can 

be used for both legitimate and malicious purposes. Steganalysis, the art of detecting these hidden messages, 

is therefore of paramount importance [1]-[3]. Traditional steganalysis methods often struggle with robustness, 

especially when faced with adversarial attacks designed to deceive detection systems [4], [5]. 

The need to enhance model robustness against adversarial attacks has become a critical area of focus 

in the field of machine learning. Adversarial attacks pose significant threats by subtly altering input data, which 

can deceive models into making erroneous predictions, potentially leading to severe consequences in sensitive 

domains like finance, healthcare, and autonomous systems [6]. These attacks exploit the vulnerabilities in a 

model’s decision boundary, revealing that models might perform well in controlled environments but are 

fragile when faced with adversarial inputs. Strengthening the robustness of models is essential to ensure their 

reliability and accuracy in real-world applications, where adversarial conditions might be encountered [7]. 

Approaches such as adversarial training, which involves training models with adversarial examples, and the 

use of robust optimization techniques, have shown promise in mitigating these vulnerabilities [8]. Additionally, 

implementing defensive strategies like gradient masking and input transformation can further enhance the 

https://creativecommons.org/licenses/by-sa/4.0/
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model’s ability to withstand adversarial perturbations [9]. By focusing on developing robust machine learning 

models, the field can better protect these systems from adversarial threats, ensuring their safety and 

effectiveness across various applications. 

In this paper, we propose an advanced steganalysis system that leverages the feature extraction 

capabilities of EfficientNet [10] and incorporates adversarial training to enhance robustness against adversarial 

attacks. Our approach involves training a dense neural network on features extracted by EfficientNet, combined 

with a custom adversarial training loop using the fast gradient sign method (FGSM) [11]. Goodfellow et al. [11] 

introduced the FGSM to create adversarial examples. This technique leverages the derivative of the network’s 

loss function concerning the input feature vector. For a given input image, FGSM perturbs each feature by 

adjusting it in the direction of the gradient. Consequently, this modification alters the classification outcome 

of the input image. For a neural network with a cross-entropy loss function, where the input image and target 

class are specified, the adversarial example is generated by adding a small perturbation to the original image. 

This perturbation is controlled by a parameter that determines its size, ensuring the changes are subtle yet 

effective in misleading the network [11]. 

DeepFool is an untargeted attack method that generates adversarial examples through iterative 

perturbations of an image. This approach aims to find the nearest decision boundary by slightly modifying the 

image in each iteration until the altered image changes the network’s classification [12]. The Carlini and 

Wagner (C&W) method, named after its creators, is a powerful attack that can be either targeted or untargeted. 

It utilizes three metrics to measure distortion: L0, L2, and L∞ norms, with the untargeted L2 norm version 

being noted for its superior performance. This method generates adversarial examples by solving an 

optimization problem to find the smallest perturbation that misleads the network. The optimization balances 

minimizing the perturbation and altering the network’s classification, controlled by a hyperparameter. This 

attack seeks the minimal L2 norm perturbation to change the image’s classification while ensuring the 

perturbed image remains within valid pixel values. The method also incorporates a confidence parameter to 

generate adversarial examples with high classification confidence, which enhances their transferability to other 

models. The C&W method is recognized for its robustness and difficulty to defend against [13]. 

Qin et al. [14] leverages vector-wise embedding with color pixel vectors (CPV) for color image 

steganography, improving upon traditional element-wise embedding. In particular, this method uses the 

iterative fast gradient sign method (I-FGSM) to generate adversarial perturbations that effectively deceive 

steganalytic convolutional neural networks (CNNs). By incrementally adjusting adversarial costs within non-

overlapping sub-images, this approach reduces detectability, maintaining a high success rate against CNN-

based steganalyzers. Robustness-based defense focuses on correctly classifying adversarial examples, and 

various methods have been developed to achieve this. One common approach is adversarial training, which 

involves augmenting the training set with a mix of normal and adversarial examples to improve the network’s 

resilience [11]. 

Another strategy is preprocessing input images to remove adversarial perturbations through 

techniques such as principal component analysis (PCA). Bhagoji et al. [15] investigate the enhancement of 

machine learning system robustness through various data transformations. Their study reveals that  

certain transformations, such as input preprocessing, feature manipulation, and PCA, can significantly mitigate 

the impact of adversarial attacks, thereby improving the resilience of neural networks to adversarial 

perturbations [15], [16]. 

Another method is JPEG compression, adding noise, cropping, and rotating. Das et al. [17] propose 

using JPEG compression as a preprocessing step to defend against adversarial attacks. By removing high-

frequency signal components through selective blurring, JPEG compression can mitigate the impact of 

perturbations added to images. Their approach shows that this technique can significantly reduce the efficacy 

of several attack methods, including the FSGM and DeepFool, without requiring prior knowledge of the model 

under attack.  

Papernot et al. [18] introduce defensive distillation as a method to enhance the robustness of deep neural 

networks (DNNs) against adversarial attacks. By leveraging knowledge distillation techniques, this approach 

reduces the effectiveness of adversarial sample generation, significantly mitigating the success rate of such 

attacks. The study demonstrates a dramatic reduction in adversarial effectiveness, highlighting the potential of 

distillation to improve DNN security and resilience. Defensive distillation enhances robustness by hiding the 

gradient between the pre-softmax layer and softmax outputs usinqing distillation training techniques [16], [18]. 

Additionally, obfuscated gradients hinder attackers by making it difficult to compute feasible 

gradients for generating adversarial examples. Athalye et al. [19] identify and analyze obfuscated gradients, a 

form of gradient masking that falsely appears to offer security against adversarial attacks. The study 

demonstrates that defenses relying on obfuscated gradients can be effectively circumvented, showcasing 

techniques to bypass such defenses and revealing their vulnerability in a white-box setting. The paper 

emphasizes that many defenses accepted at International Conference on Learning Representations (ICLR) 
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2018, which claim robustness, actually depend on obfuscated gradients, making them susceptible to targeted 

attacks [19]. 

Meng and Chen [20] proposed MagNet, a framework for defending neural networks against 

adversarial examples. This framework neither modifies the protected classifier nor requires knowledge of the 

adversarial example generation process. MagNet employs detector networks to distinguish between normal 

and adversarial examples by approximating the manifold of normal examples. Additionally, a reformer network 

is used to move adversarial examples closer to the manifold of normal examples, enabling correct classification. 

MagNet has demonstrated effectiveness against state-of-the-art attacks in black-box and gray-box scenarios 

without sacrificing false positive rates. 

Taran et al. [21] proposed a key-based diversified aggregation (KDA) mechanism to defend DNNs 

against adversarial attacks in gray-box and black-box scenarios. KDA involves a multi-channel architecture 

with randomized transformations applied to each channel. The randomization, based on a secret key, prevents 

gradient backpropagation and hinders the attacker’s ability to create effective adversarial examples. By 

aggregating the outputs from multiple channels, KDA improves the robustness and reliability of the 

classification process. The authors demonstrated the effectiveness of KDA against various state-of-the-art 

attacks, including gradient-based and non-gradient-based methods [21]. 

EfficientNetB0 is part of the EfficientNet family, a series of CNNs designed for high performance 

and efficiency. The key innovation in EfficientNet is the use of a compound scaling method that uniformly 

scales all dimensions of depth, width, and resolution using a simple yet effective scaling coefficient. 

EfficientNetB0, the baseline model, achieves remarkable accuracy and efficiency by optimizing this balance. 

It utilizes fewer parameters and computational resources while maintaining or even improving performance 

compared to previous architectures. EfficientNetB0 employs a combination of depth wise convolutions, 

squeeze-and-excitation optimization, and the MBConv block (a variant of inverted residual blocks). These 

architectural choices allow it to achieve state-of-the-art performance on several benchmarks while being 

significantly more computationally efficient [10]. 

Random forest is an ensemble learning method that combines multiple decision trees to improve 

classification accuracy and robustness [22]. This model is known for its ability to handle large datasets and 

perform well with unstructured data, making it a popular choice for various machine learning tasks. However, 

random forests are susceptible to adversarial examples, which are intentionally perturbed inputs designed to 

deceive machine learning models. Unlike DNNs, which can learn complex representations and potentially 

develop some level of resilience to adversarial attacks through specialized training techniques, random forests 

lack inherent mechanisms to deal with such perturbations effectively. Adversarial examples exploit the linear 

decision boundaries of each individual tree within the ensemble, leading to misclassifications. Recent studies have 

shown that adversarial attacks can reduce the accuracy of random forest models significantly more than that of 

well-trained DNNs, which can be fortified through adversarial training and regularization techniques [18], [23].  

Therefore, while random forests provide a simple and interpretable model, their vulnerability to 

adversarial attacks highlights the need for additional defenses when deploying these models in adversarial 

settings. In this paper, we contribute the following novelties: 

− We implemented three different machine learning and deep learning models on our dataset and evaluated 

the models under attack.  
− We used EfficientNet to extract features from images and trained the models above on these extracted data.  

− We achieved high accuracy and precision in our proposed method compared to other base models. 

This paper is organized as follows. In section 2, we explain the data preparation and preprocessing 

operations. Then in section 3, we explain the proposed methods including deep learning and machine learning 

techniques. Later, we show the results of the implemented methods in section 4. Finally, section 5 presents the 

discussion and concludes the paper. 

 

 

2. METHOD  

Our proposed method integrates EfficientNet for feature extraction and adversarial training to enhance 

the robustness of a steganalysis system. EfficientNet is chosen for its ability to capture intricate patterns in 

image data with fewer parameters, making it both effective and computationally efficient. The model is trained 

using a dataset augmented with adversarial examples generated through the FGSM, which introduces slight 

perturbations to the input data. This process helps the model learn to maintain high performance even when 

facing adversarial attacks. The architecture of our model includes layers such as dropout and batch 

normalization to improve generalization and stability by reducing overfitting and normalizing feature inputs, 

respectively. These layers are critical in ensuring that the model remains robust under various conditions, 

particularly in adversarial settings. Compared to traditional machine learning approaches like random forest, 

our model offers superior accuracy and resilience, demonstrating its capability to not only accurately classify 
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images but also withstand adversarial perturbations, which is essential for real-world applications where 

security and reliability are paramount. 

EfficientNet is a high-performance model architecture optimized for computational efficiency. It 

scales depth, width, and resolution in a compound manner, enabling smaller models to achieve higher accuracy 

than many conventional architectures [10]. In adversarial training, a model is iteratively exposed to 

adversarially perturbed inputs during training to improve its robustness. This method uses adversarial examples 

(generated via techniques like FGSM) alongside regular inputs, allowing the model to adapt and learn 

discriminative patterns that reduce susceptibility to attacks. This ongoing exposure helps the model generalize 

better to unseen adversarial scenarios, particularly in complex visual tasks [8], [9], [11]. 

 

2.1.  Data preparation and preprocessing 

For our dataset, we utilized 20,000 images from the CelebA dataset [24] to train our proposed model. 

For preprocessing, first, to create steganographic images, we implemented a function that generated random 

strings and embedded these strings into the images using the least significant bit (LSB) method. The dataset 

was then split into training, validation, and test sets, with an 80:20 ratio between the training and test datasets. 

Then, each image was resized to 64×64 pixels to ensure efficient processing. Afterward, we generated 

steganographic images. Then, the images were prepared using EfficientNet’s “preprocess input” function to 

ensure compatibility with the pre-trained model. After experimenting with various EfficientNet models and 

evaluating their performances, the EfficientNetB0 model was selected for feature extraction, generating feature 

vectors for each image. 

Our steganalysis system consists of two main components: EfficientNet for feature extraction and a 

dense neural network for classification. The proposed model is designed using the sequential API from 

TensorFlow’s Keras library, featuring multiple fully connected (dense) layers with enhancements for training 

efficiency and performance. It begins with an input layer tailored to the dimensionality of the training features. 

The first hidden layer contains 1024 neurons, followed by batch normalization for input stabilization, leaky 

rectified linear unit (ReLU) activation with a negative slope of 0.01 to address the dying ReLU problem, and 

a dropout layer with a 0.5 rate to prevent overfitting. Subsequent layers include 512, 256, 128, 64, 32, 16, 8, 

and 4 neurons, each employing batch normalization and leaky ReLU activation, with the first three also 

incorporating dropout. Leaky ReLU activation function and batch normalization [25] is also utilized for 

improved training [26]. The output layer features a single neuron with a sigmoid activation function for binary 

classification. The model is compiled with the Adam optimizer [27] (learning rate of 0.0003), 

BinaryCrossentropy loss function, and accuracy metric for performance evaluation. This architecture leverages 

batch normalization for better convergence, leaky ReLU to avoid dead neurons, and dropout to enhance 

generalization, making it robust and effective for the task at hand. Figure 1 shows the architecture of the model. 

The figure is generated using visualkeras [28]. 

 

 

 
 

Figure 1. Model architecture 

 

 

We employed the FGSM with a perturbation magnitude (epsilon) set to 0.01 to generate adversarial 

examples. These examples were used to augment the training data, enhancing the model’s robustness to 

adversarial attacks. The adversarial training loop involved generating adversarial examples on the fly and 

combining them with original examples during each training epoch. This loop was designed to generate 

adversarial examples dynamically during each training epoch. That involved continuously producing new 

adversarial instances that were then mixed with the original training data. This approach not only increases the 

diversity of training examples but also helps the model develop a more nuanced understanding of the 

underlying data distribution, thus improving its overall resilience to adversarial perturbations. 
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The decision to apply the FGSM attack on the features extracted by EfficientNet, rather than directly 

on the original images, is driven by several key considerations: 

− High-level feature manipulation: EfficientNet is designed to extract high-level, abstract features from 

images that are more representative of the underlying patterns and structures relevant for classification 

tasks. By applying FGSM on these high-level features, we ensure that the adversarial perturbations are 

crafted to target the most critical aspects of the data used by the classification model. This approach is 

likely to generate more effective adversarial examples that can challenge the model’s robustness more 

directly. 
− Dimensionality reduction: the feature space produced by EfficientNet is typically of lower dimensionality 

compared to the original image space. Operating in this reduced feature space allows for more efficient 

computation of adversarial examples. The FGSM attack, which involves calculating gradients, can be 

computationally intensive; thus, applying it in the feature space can significantly reduce the computational 

burden and expedite the generation of adversarial examples. 
 

 

3. RESULTS AND DISCUSSION 

To evaluate our proposed model system, we designed two scenarios. In the first scenario, the train set 

and test set have no adversarial instances. The purpose in scenario 1 is to evaluate the general performance of 

our steganalysis model against normal steganography images. Conversely, in the second scenario, we add 

adversarial instances to our train set on-the-fly. The evaluation also takes place on the test that contains 

adversarial instances. We trained three models: random forest model, base model, and adversarial model. 

 

3.1.  Scenario 1 

In the first scenario, the dataset did not contain any adversarial instances. Additionally, we trained a 

random forest model for comparison with our proposed architecture. The results of this test are presented in 

Table 1. 

 
 

Table 1. Performance comparison of models in scenario 1 
Metric Base model Random forest 

Accuracy 0.81450 0.65075 
Precision 0.84255 0.64952 

Recall 0.77195 0.64952 

F1-score 0.80570 0.64952 
ROC-AUC 0.81435 0.65074 

 

 

3.2.  Scenario 2 

For the second part of the test, we included adversarial instances in the dataset. The adversarial model, 

which contains dropout and batch normalization layers, was trained with these adversarial examples. Figure 2 

depicts the accuracy and loss plots for the adversarial model. In contrast, the base model and random forest did 

not encounter adversarial examples during their training. The results of this test are presented in Table 2. 
 

 

 
 

Figure 2. Training plot of the adversarial model 
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The evaluation of our proposed model system was conducted using two distinct datasets. The first 

dataset did not contain any adversarial instances, and we used it to benchmark the performance of our proposed 

model against a random forest model. As shown in Table 1, our proposed model significantly outperformed 

the random forest across all metrics. Specifically, our model achieved an accuracy of 0.81450, precision of 

0.84255, recall of 0.77195, F1-score of 0.80570, and ROC-AUC of 0.81435, while the random forest lagged 

behind with an accuracy of 0.65075, precision of 0.64952, recall of 0.64952, F1-score of 0.64952, and ROC-

AUC of 0.65074. 

In the second part of the test, adversarial instances were included in the dataset to further evaluate the 

robustness of our proposed model. Unlike the base model and random forest, our adversarial model was trained 

with these adversarial examples and featured dropout and batch normalization layers. The results, presented in 

Table 2, illustrate a significant performance drop for the base model and random forest when faced with 

adversarial instances, with accuracies of 0.65400 and 0.54862, respectively. Their other metrics also declined 

substantially. 

 

 

Table 2. Performance comparison of different models in scenario 2 
Metric Base model Random forest Adversarial model 

Accuracy 0.65400 0.54862 0.72087 

Precision 0.62016 0.61829 0.70983 

Recall 0.78850 0.24586 0.74385 
F1-score 0.69427 0.35182 0.72644 

ROC-AUC 0.65446 0.54756 0.72095 

 

 

Conversely, our adversarial model demonstrated superior resilience to adversarial attacks, achieving 

an accuracy of 0.72087, precision of 0.70983, recall of 0.74385, F1-score of 0.72644, and ROC-AUC of 

0.72095. These results indicate that our adversarial training approach and the incorporation of dropout and 

batch normalization layers effectively enhanced the model’s robustness, maintaining higher performance levels 

in the presence of adversarial examples compared to models not trained with such examples. This underscores 

the importance of adversarial training in developing robust machine learning models capable of resisting 

adversarial perturbations. 

The key difference between our proposed model and the random forest model lies in their architecture 

and adaptability to complex data patterns, particularly when faced with adversarial instances. Our proposed 

model is a neural network that incorporates advanced techniques such as batch normalization and dropout 

layers, allowing it to learn more intricate features from the data and maintain robust performance under varied 

conditions. As shown in the results from Table 1, this design led to a clear performance advantage over the 

random forest model, which relies on ensemble learning but lacks the deep learning model’s ability to capture 

non-linear relationships effectively. The random forest model exhibited significantly lower accuracy, precision, 

recall, F1-score, and ROC-AUC compared to our proposed model, highlighting the limitations of traditional 

machine learning methods in handling complex datasets without adversarial examples. 

The inclusion of adversarial examples during training further underscores the importance of exposing 

models to diverse data variations to enhance robustness. Our adversarial model, designed with the capability 

to train on adversarial examples, showed remarkable resilience against adversarial attacks, as evidenced by its 

superior performance metrics in Table 2. In contrast, both the base model and the random forest experienced a 

notable decline in accuracy and other performance metrics when tested against adversarial examples, 

demonstrating their vulnerability. The adversarial training process, coupled with the architectural 

enhancements of our model, proved effective in improving its adaptability and robustness, maintaining higher 

performance levels compared to models that were not trained with adversarial examples. This higher 

performance is noticeable in Figure 3 where different metrics are compared across models. 

EfficientNet has demonstrated exceptional capability as a feature extractor, capturing intricate details 

that contribute to precise classification in our steganalysis system. Its architectural efficiency allows it to focus 

on crucial patterns within the data, enabling a robust identification of features necessary for detecting hidden 

messages. Our results show that training with adversarial examples significantly enhances the robustness of 

the system, as reflected in the improved performance metrics under adversarial conditions. This approach 

effectively bolsters the model’s resistance to adversarial attacks, which are designed to mislead the model by 

introducing subtle perturbations. The base model, despite its initial effectiveness, revealed a susceptibility to 

these adversarial manipulations, underscoring the necessity for adversarial training in reinforcing model 

resilience. 
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Figure 3. Metrics comparison between trained models 

 

 

The random forest model, while simpler and providing a competitive baseline, lacks the robustness 

and adaptability offered by deep learning models l. Although random forests are advantageous in scenarios 

with limited computational resources and offer quick, straightforward implementation, they do not match the 

capability of deep learning models in handling complex data transformations and adversarial challenges. The 

combination of EfficientNet and adversarial training emerges as a powerful strategy for steganalysis, enabling 

the detection of hidden messages while maintaining robustness against adversarial perturbations. This 

highlights the critical importance of adversarial training in developing machine learning models that are not 

only accurate but also resilient to manipulative perturbations. Such robustness ensures reliability in practical 

applications where adversarial attacks pose a significant threat, reinforcing the model’s effectiveness and 

dependability in real-world scenarios. By incorporating these elements, our approach not only improves 

detection capabilities but also sets a foundation for future enhancements in machine learning security. 

 

3.3.  Comparison 

Given the novelty of the proposed approach, direct comparison with existing methods is challenging 

due to the lack of directly comparable studies. However, to provide context for the performance of our method, 

we have selected a baseline approach and also offer a theoretical comparison to highlight the unique aspects of 

our work. Table 3 summarizes key differences and the potential advantages of our method. 

 

 

Table 3. Comparison of methods 
Methodology Technique Image size Notable characteristics 

Proposed method DNN with adversarial 

training 

64×64 Complex in training, high precision and accuracy, robust 

against adversarial examples 

Random forest Ensemble 64×64 Simple, vulnerable against adversarial examples, low accuracy 
and precision in comparison with other models. 

Base model DNN 64×64 Simple training, high accuracy in detecting normal examples, 

vulnerable against adversarial examples 

 

 

3.4.  Limitations 

In this study, one of the main limitations is the lack of well-established baseline models for 

comparison. Given that this field is relatively new and rapidly evolving, there are few, if any, benchmark 

methods with standardized datasets or performance metrics that would provide a direct comparison for our 

model. Consequently, this limits our ability to quantitatively assess our model’s performance against a diverse 

set of approaches. Future work in this area will likely benefit from the development of more established 

benchmarks, which would provide clearer standards for evaluating and comparing advancements across 

different models. 
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4. CONCLUSION  

This paper presents a novel steganalysis system that leverages EfficientNet for efficient feature 

extraction and adversarial training to enhance robustness. Our results demonstrate that the proposed system 

achieves high accuracy in detecting steganographic content and maintains resilience against adversarial attacks. 

This dual approach represents a significant advancement in steganalysis, offering a robust solution for secure 

information transmission in the real scenarios where the high performance of detection system is vital. Future 

research could explore the integration of advanced generative models and adversarial techniques to further 

improve the system’s performance and robustness. 
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