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Abstract 

A Volterra kernel identification method based on state transition algorithm with orthogonal 
transformation (called OTSTA) was proposed to solve the hard problem in identifying Volterra kernels of 
nonlinear systems. Firstly, the population with chaotic sequences was initialized by using chaotic strategy. 
Then the orthogonal transformation was used to finish the mutation operator of the selected individual. 
OTSTA was used on the identification of Volterra series, and compared with particle swarm optimization 
(called PSO) and state transition algorithm (STA). The simulation results showed that OTSTA has better 
identification precision and convergence than PSO and STA under non-noise interference. And when there 
is noise, the identification precision, convergence and anti-interference of OTSTA are also superior to PSO 
and STA. 
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1. Introduction 

More and more high coupling nonlinear system appaered for the development of high 
technology, how to describe these models has been become a research hotspot. With the 
development of the nonlinear theory, Volterra series has been widely applied in the modeling 
and faults diagnosis of nonlinear system [1]. Volterra functional series considers the dynamic 
characters of the system, and its kernel has a distinct physical meaning. So the series can 
approximate arbitrary precision continuous function on the set, and describes the categories of 
nonlinear phenomenon [2]. 

The key of building nonlinear system by Volterra series model is to identify the structure 
and parameter of the model [3]. So, there is an urgent demand for effective identification 
methods. 

The traditional identification methods on Volterra series generally adopt the least 
squares algorithm [4], but the least squares’ identification efficiency is relatively low and easy to 
fall into local minimum. In recent years, intelligent optimization methods has been introduced 
into the kernel identification on the Volterra series problems, like genetic algorithm [5], adaptive 
ant colony algorithm [6], quantum particle swarm optimization [7-8], cross-correlation method 
[9], etc. Those algorithms can overcome the drawbacks of the traditional identification methods, 
such as the requirement on the continuous differentiable objective function, and the sensitivity 
the measurement noise. However, they still have their own limitations on solving the problem of 
optimization [10]. Consequently, none of these algorithms can accurately solve the problem of 
Volterra series identification. 

In order to overcome the shortcomings of Volterra series identification, this paper 
proposed the Orthogonal Transformation State Transition Algorithm (OTSTA). OTSTA is a new 
intelligence algorithm. And it is easy to understand, due to the less numbers of the parameters 
and the simple algorithm structure. Firstly, in the initialization phase chaotic sequence was used 
to initialize the population. Then the orthogonal transformation mechanism was introduced to 
mutate some individual with poor fitness in the process of the search to increase the diversity 
and give more opportunity to jump out of local optimum. Finally, The new method is compared 
with traditional state transition algorithm and PSO method through simulation verification. The 
results show that OTSTA a global optimization algorithm with strong robustness. It can resolve 
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the conflict between convergence speed and global search capability efficiently and so facilitate 
diversity within the population, improving the global search ability of the algorithm. 

 
 

2. Volterra Series  
The single input and output nonlinear system can be expressed by Volterra series[11] 

as the follows: 
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Here,  u n and  y n are the input and output of the system respectively,  1, ,k kh i iL  is the 

kth-order time domain kernel of the system [7]. 
The first three orders with the Volterra series is generally used to describe the dynamics 

characteristics of nonlinear system. The kth-order time domain is unique and symmetric. With its 
symmetry, the Volterra series is shown as Equation (2): 
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 1,2,3pN p  is the Volterra kernel memory length, and  e n is the truncation error. 
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Where, N represents the kernel memory length. The system input vector is X(n), and kernel 
vector is H . Equation (2) describes the relationship between input and output of the nonlinear 
system, which can be expressed as the vector form, as follows: 
 

     Ty n H X n e n 
                                                   (5) 

 
It can be seen from Equation (5) that the output of a nonlinear system can be expressed 

as a linear combination of each element of the input vector X(n).  The Volterra series 
model based nonlinear system identification is used to solve the kernel vector H when the input 
and output sequence of the system are given. The essence of the identification is a parameter 
optimization process. 

In this paper, state transition algorithm with orthogonal transform was used to solve the 
kernel vector. 
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3. Orthogonal Transformation State Transition Algorithm  
3.1. State Transition Algorithm  

The state transition algorithm was proposed by YANG in 2011 [12-14]. A solution to the 
specific optimization problem can be described as a state, and the optimization algorithm can be 
treated as state transition. Then the process to solve the optimization problem can be regarded 
as a state transition process. 

The state transition algorithm is easy to understand, due to the less numbers of the 
parameters and the simple algorithm structure. The state transition is defined as the following 
form: 
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Here, n
kx R stands for a state and corresponds to a solution of the optimization 

problem. n n
k kA B R ，  are state transition matrixes which can be regarded as the operators 

of optimization algorithm. n
ku R is the function of the state kx  and its history state.  f is the 

objective function. 
 

3.2. The Transition Operators 
There are three operators called rotation transformation (RT), translation transformation 

(TT), expansion transformation (ET) in STA. Rotation transformation is used to improve the 
global search ability, translation transformation can improve local search ability, and expansion 
transformation can balance the relations between the two. Besides, reference [15] proposed 
axesion transformation to simplify the search ability of one dimensional. 

The details of the four operators are shown as follows [15]: 
(1) Rotation transformation:  
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(2) Translation transformation:  
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(3) Expansion Transformation:  
 

1k k e kx x R x                                                                             (9) 

 
(4) Axesion Transformation:    
 

1 ak k kx x R x                                                                             (10) 

 

Here, n
kx R ,    ， ， ， are all positive constants, called rotation factor, translation factor, 

expansion factor, and axesion factor respectively. n n
rR R  is a random matrix with its 

elements belonging to the range of [-1, 1] and 
2kx is 2-norm of a vector. tR R is a random 

variable with its elements belonging to the range of [0,1]. n n
eR R  is a random diagonal matrix 

with its elements obeying the Gaussian distribution. n n
aR R  is a random diagonal matrix with 

its elements obeying the Gaussian distribution and only one random index has value. 
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The procedure of the original state transition algorithm can be outlined as follows. 
 

1: Initialize feasible solution x(0) randomly, set    ， ， ，  and k ← 0 
2: repeat 
3: k=k+1 
4: while   ≤ error do  
5: State ←Rotation transformation ( ( 1)x k  , times of search enforcement, α) 
6: if min ( ) ( ( 1))f State f x k   then 
7: Updating ( 1)x k   
8: State ←Translation transformation ( ( 1)x k  , times of search enforcement, β)  
9: if min ( ) ( ( 1))f State f x k   then 
10: Updating ( 1)x k   
11:   end if 
12: end if  

13:   ←
cf


 

14: end while 
15: State ←Expansion Transformation ( ( 1)x k  , times of search enforcement,  ) 
16: if min ( ) ( ( 1))f State f x k   then 
17: Updating ( 1)x k   
18: State ←Translation transformation ( ( 1)x k  , times of search enforcement, β) 
19: if min ( ) ( ( 1))f State f x k   then 
20: Updating ( 1)x k   
21:    end if 
22: end if 
23: State ←Axesion Transformation ( ( 1)x k  , times of search enforcement, ) 

24: if min ( ) ( ( 1))f State f x k   then 
25: Updating ( 1)x k   
26: State ←Translation transformation ( ( 1)x k  , times of search enforcement, β) 
27: if min ( ) ( ( 1))f State f x k   then 
28: Updating ( 1)x k   
29:    end if 
30: end if 
31: ( )x k  ← ( 1)x k   
32: until the specified termination criterion is met 

 
 
3.3. Orthogonal Transformation Strategy 

In order to further enhance the algorithm's searching ability, the state transition 
algorithm based on the orthogonal transform (OTSTA) is proposed. In OTSTA chaotic strategy 
is used to initialize the population for its nonrepeatability and ergodicity. The orthogonal 
transformation operation is applied on the poor individuals during the process, which can 
effectively avoid premature convergence and improve the global search ability. 

 
3.3.1. Initializing 

In non-linear system, chaos is a common motion phenomenon with such excellent 
characteristics as ergodicity, randomness and “regularity”.Chaotic motion can experience all the 
states in the state space without repetition according to certain “rule” within certain motion range 
[16]. During initialization, firstly chaotic strategy is used to randomly generate M dimensional 

vector 1 11 12 1, , , )MX x x x （ . Then, the model iterative chaotic sequence containing N vectors 

is obtained by the Logistic map [17], shown in Equation (11). 
 

1= (1 ), 0,1,..., 1k k kX X X k N                                           (11) 
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Here, 0, 4], [0,1]x  （ .In this paper, we use the same parameter setting =4 as [17, 18]. 
The fitness values of all the states are calculated by fitness function. Then better 

performance part is chosen as the initial solution. 
Using chaotic sequence to initialize states improves the diversity of the states without 

lose of randomness. 
 

3.3.2. Orthogonal Transformation Strategy 
In order to maintain the diversity and breadth of search, this paper adopts the 

orthogonal transformation along with the original four operators. About 10%  individuals ( )D t
with the poor fitness value  are chosen from the overall size P(t) after each completed state 
transformation.  Then orthogonal matrix X is gotten through  orthogonal transformation  under 
the orthogonal basis. For any ( )x D t , if the orthogonal x’ has better fitness value, x  would be 
replaced by x’. Otherwise, x would be preserved. The orthogonal operation is repeated until all 
chosen poor individual are replaced.  

For any , kx  , there is    ' , ' ,x x    . x’ is called the orthogonal transformation 

of kx . And ' 'x x  .Here is the orthogonal basis of kx . 

 
 

4. Volterra Series Identification by OTSTA 
The essence of Volterra series identification is that it could convert the parameter 

identification problem to optimization problem. STA is used to find function optimal solution and 
to get the minimum evaluation function value. The kernel vector H of Volterra series, 
which needs to be identified, is seen as the state Xk of OTSTA, and the state transition is 
regarded as the process of identification algorithm. 

For Volterra series identification problem, the square of the difference between  the 
actual output and the parameter model output is set to be the evaluation function of  Volterra 
series identification, shown in Equation (12): 
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Here, L is the length of the window, and  y k%  is the estimated output value. The algorithm 

demonstrates the whole process of OTSTA: 
 

OTSTA 

Step 1 Initialization: 
 Initialize initial state by chaotic sequence 
 Set parameters 
 Calculate the fitness value based on equation(8) 

Step 2 Iteration 
 Execute strategy: RT,ET,AT 
 If get better fitness value, execute TT, else maintain 

Step 3 Updating the status 

 1( )kf x  < ( )kf x , 1kx   instead of kx ,else kx
maintain 

Step 4  Use Orthogonal transformation 
 OT used on 10% individual with poor values 

 maintain better state 
bestx


  

Step 5  Replace 

 
bestx


replaces the current state 

step 6 End 
 Meet the requirement, end 
 Else back to step 2 
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5. Performance Evaluation 
We considered the following second order nonlinear model as the experimental subject 

[19]: 
 

2 2y( ) 0.5 ( ) 0.4 ( 1) 0.9 ( 2)+1.2 ( ) 0.2 ( 1) 0.8 ( 1) ( 2)n u n u n u n u n u n u n u n                       (13) 
 

According to the Volterra theory, the kernel vector of the nonlinear system was H= [0.5,-0.4, 0.9, 
1.2, 0, 0, 0.2,-0.8, 0]. 

The white noise signal was chosen as the system input. The variance was set as 1 and 
the length was set as 20. In order to verify the search ability and search speed of the OTSTA, 
the input and output with or without noise were both considered when using the second order 
Volterra to build the nonlinear model. In order to test the performance of the proposed algorithm, 
STA, PSO and Reference [19], which were recognized as distinguished algorithms for Volterra 
series identification, were used for comparison with OTSTA. 

The OTSTA was used to identify the kernel vector of Volterra series without noise 
whose parameters were set as follows on the basis of experimental method:  

a) Times of search enforcement : 500, 
b) The number of epoch: 100,  
c) Communication frequency : 50Hz, 
d)  : 1 to e-5, 
e)   、 、 : 1, 

f) cf : 5.  

In order to ensure fairness, the STA was set the same parameters as OTSTA. The 
parameters of PSO were set through many times test as follows:  

a)  The number of particle : 100,  
b)  The number of iterations : 500,  
c)  Contraction factor s : 0.72, 
d)  Accelerating factor: c1=c2=1.49. 
We used the average deviation to evaluate the stability of three algorithms. 
 

10

i 1

av.dev = *T T



                                                          (14) 
 

*T is the value that the actual value minus simulation value, T is the actual value. 
 
5.1.  Under No Noise Interference 

Programs were run independently for 20 trails for each algorithm in MATLAB R2010a 
The comparison results for OTSTA, STA, PSO and QPSO [19] were listed in Table 1. The 
convergence curve of OTSTA under no noise interference was shown as Figure 1. Figure 2 and 
Figure 3 showed the convergence curves of the Volterra kernel vector h1(0) and h2(0,0) of 
PSO，OTSTA and STA respectively. The truth-values were h1(0)=0.5，h2(0,0)=1.2. 

 
 

Table 1. The results under the free-noise interference 

Kernel 
H 

truth- 
value 

STA OTSTA PSO QPSO[19

optimal 
value 

av.dev time/
optimal 
value 

av.dev time/
optimal 
value 

av.dev time/
optimal 

value 
h1(0) 0.5 0.5 1.3e-5 

61.3

0.5 1.9e-6 

65.8

0.5 2.1e-5 

168.2

0.5 

h1(1) -0.4 -0.4 0.9e-7 -0.4 2.1e-8 -0.4 1.1e-7 -0.4 

h1(2) 0.9 0.9 3.1e-10 0.9 0.9e-10 0.9 0.9e-9 0.9 

h2(0,0) 1.2 1.2 0.3e-6 1.2 2.2e-7 1.2 1.9e-6 1.2 

h2(0,1) 0 0 1.2e-8 0 1.6e-9 0 1.7e-8 0 

h2(0,2) 0 0 0.4e-11 0 0.5e-11 0 3.5e-11 0 

h2(1,1) 0.2 0.2 2.7e-9 0.2 1.2e-9 0.2 0.1e-9 0.2 

h2(1,2) -0.8 -0.8 2.6e-8 -0.8 1.7e-8 -0.8 1.3e-7 -0.8 

h2(2,2) 0 0 3.1e-12 0 0.8e-12 0 2.4e-12 0 
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It can be seen from the Table 1 that OTSTA is superior to STA and PSO in Volterra 
series identification under no noise. It not only had fast convergence speed, but also had strong 
global search ability. Under no noise interference, OTSTA had no obvious advantage compared 
with QPSO in Reference [19]. 

 
 

 
 

               Figure 1. The convergence curve under no noise interference  
 
 
The preference of the algorithms was judged by the parameters identification error [20]. 

It can be seen from Figure 1, Figure 2 and Figure 3 that OTSTA can get the optimal solution 
when the iteration number up to 100, which means OTSTA had a better convergence and 
higher precision in identification on the Volterra series. 

 
 

 
 

 

Figure 2. The convergence curves of the 
Volterra kernel vector h1(0)under the no noise 

interference 

Figure 3. The convergence curves of the 
Volterra kernel vector h2(0,0)under the no 

noise interference 
 

                                                                                                         
5.2. Under Noise Interference 

For the noisy case, the noise of superposition added on the input and the output was 
independent stationary white noise and its signal SNR was 20 dB. 

The noise was added on the input and output respectively. We used the same methods. 
The results of the three algorithms and Reference [19] were shown in Table 2. The convergence 
curve of OTSTA under noise interference was shown in Figure 4. It can be seen from optimal 
value, av.dev and simulation time in table2 that OTSTA still had fast convergence speed and 
strong global search ability than STA and PSO under noise interference. And OTSTA was 
notable superior than Reference [19] in av.dev. 
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Table 2 The results of three algorithms under the noise interference 

Kernel 
H 

truth- 
value 

STA OTSTA PSO QPSO[19] 

optimal 
value 

av.dev time/
optimal 
value 

av.dev time/
optimal 
value 

av.dev time/
optimal 
value 

av.dev time/

h1(0) 0.5 0.49 2.1 e-3 

76.3 

0.49 1.8e-4 

79.1

0.51 2.2e-3 

188.5

0.49 9.7e-3 

NaN

h1(1) -0.4 -0.41 0.3e-3 -0.40 0.1e-4 -0.4 1.2e-3 -0.40 3.7e-3 

h1(2) 0.9 0.90 1.4e-2 0.90 2.2e-3 0.90 1.9e-3 0.90 7.0e-3 

h2(0,0) 1.2 1.18 4.3e-2 1.21 1.1e-3 1.18 2.7e-2 1.18 2.0e-2 

h2(0,1) 0 0 1.5e-3 0 3.6e-4 0 1.1e-3 0 1.6e-3 

h2(0,2) 0 0 0.7e-3 0 0.4e-3 0 0.5e-3 0 0.4e-3 

h2(1,1) 0.2 0.21 2.9e-3 0.2 4.3e-4 0.19 0.1e-2 0.19 0.6e-3 

h2(1,2) -0.8 -0.8 1.8e-3 -0.8 1.7e-3 -0.83 2.3e-2 -0.78 1.7e-2 

h2(2,2) 0 0 3.1e-4 0 1.5e-4 0 1.9e-3 0 1.4e-3 

 
 

  
 

Figure 4. The convergence curve under noise interference 
 
 

Figure 5 and 6 showed the changes in Volterra kernel vector h1(0) and h2(0,0) with 
number of iterations using the three algorithms, which described the convergence 
characteristics of the three algorithms in the optimization process. The OTSTA algorithm could 
converge and produce good optimization results after a small number of iterations, 
demonstrating convergence characteristics significantly better. PSO and STA had fluctuated 
obviously and slowly convergence speed by noise influenced. 

 
 

 
 

 

Figure 5. The convergence curves of the 
Volterra kernel vector h1(0)under the noise 

interference 

Figure 6. The convergence curves of the 
Volterra kernel vector h2(0,0)under the noise 

interference 
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From the analysis of the comparison of the above figures and tables, we know that 
OTSTA is a suitable tool to solve the volterra series identification under no noise as well as 
noise interference. It is not only has high precision, but also has Strong robustness. 
 
 
6. Conclusion 

Based on the the analysis on the principle and the kinematical characteristics of Volterra 
series, a new improved intelligent algorithm is proposed with orthogonal strategy. The chaotic 
strategy is used to initialize the population with chaotic sequences, and orthogonal 
transformation is used to transform mutation on some poor individuals, which can improve the 
global search ability. This improved state transition algorithm is applied to identify Volterra 
series, and the results are analyzed comparing with STA and PSO. Through the simulation 
experiment, OTSTA algorithm achieves higher identification precision than STA and PSO, and 
has higher identification speed than PSO under no noise as well as noise interference. State 
transition algorithm with orthogonal transformation is used on the identification on the Volterra 
series. This method can not only improve the global search capability effectively, avoid 
premature convergence, but also can maintain simple structure and has high search efficiency 
of state transition. This paper verifies that the OTSTA is feasible on nonlinear system Volterra 
kernel identification. The method provides a new effective method for nonlinear system 
identification. 
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