
TELKOMNIKA, Vol.14, No.3, September 2016, pp. 904~915
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/TELKOMNIKA.v14i3.3517  904

Received February 26, 2016; Revised June 8, 2016; Accepted June 29, 2016

Towards Smooth and High-Quality Bitrate Adaptation
for HTTP Adaptive Streaming

Lihong Geng1, Liang Pan2, Yiqiang Sheng3, Zhichuan Guo*4
1,2,3,4National Network New Media Engineering Research Center, Institute of Acoustics,

Chinese Academy of Sciences, Beijing 100190, China
1University of Chinese Academy of Sciences, Beijing 100190, China

*Corresponding author, e-mail: guozc@dsp.ac.cn

Abstract
Although HTTP adaptive streaming has been well documented for the cost-effective delivery of

video streaming, it is still a great challenge to play back video smoothly with high quality under the
fluctuating network conditions. In this paper, we proposed a novel bitrate adaptation algorithm for HTTP
adaptive streaming. Our algorithm employed two approaches for throughput estimation and bitrate
selection, which was evaluated on our testbed (a fully functional HTTP Live Streaming system) over a
network, emulated using DummyNet. First, the throughput estimation method, based on the prediction of
the difference between the estimated and instantaneous throughputs, was observed to respond smoothly
to short-term fluctuations and rapidly to large fluctuations. Second, the bitrate selection algorithm, based
on piecewise functions to define the variation range of the current bitrate, was found to result in smoother
changes in quality with a higher average quality. The results of our experiments demonstrated the
prospects of our bitrate adaptation algorithm for HTTP adaptive streaming.

Keywords: throughput estimation, bitrate selection, HLS

Copyright © 2016 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

With the diffusion of new video-enabled devices and faster Internet connections, video
traffic has come to dominate Internet traffic. Several video streaming protocols have been
proposed for the delivery of video content. Traditional streaming protocols, such as real time
streaming protocol (RTSP), control the video transmission rate directly; however, such protocols
are difficult to deploy because a specialized streaming server is required [1]. By contrast,
hypertext transfer protocol (HTTP [2]) adaptive streaming has become a cost-effective and
popular option because it reuses the existing Internet infrastructure, provides network address
translation (NAT) friendliness and is allowed by most firewalls [3]. Currently, one of the most
prominent approaches is HTTP Live Streaming (HLS), as proposed by Apple Inc.

In general, an HTTP adaptive streaming server knows little information about the client,
it is the client’s responsibility to make decisions regarding the selection of appropriate
alternatives to maintain a good quality of experience (QoE [4]). To provide the highest possible
video quality, an adaptation algorithm must appropriately estimate the available throughput.
Overestimation of the throughput may lead to buffer freezes, whereas underestimation of the
throughput may lead to buffer overflow. Furthermore, to provide users with a smoother video
quality, a good bitrate selection algorithm is desirable. If the bitrate is selected based only on the
estimated throughput, then abrupt changes in quality will occur when the available throughput
decreases or increases dramatically. How to fulfill both requirements discussed above is a key
research problem of HTTP adaptive streaming [5]. Researchers [6-12] have reported various
algorithms for throughput estimation and bitrate selection.

Regarding throughput estimation, in [6], the authors used the running average of the
measured throughput to estimate the throughput. However, this method exhibited a slow
response to large changes in throughput and thus had a tendency to suffer buffer underflow. In
[7], the degree of fluctuation of the throughput difference was used to dynamically control the
weighting coefficient of the method presented in [8] for throughput estimation. Although this
method showed superiority in detecting large changes in throughput, it failed to smoothly
estimate the throughput in the case of short-term fluctuations and thus incurred redundant

TELKOMNIKA ISSN: 1693-6930 

Towards Smooth and High-Quality Bitrate Adaptation for HTTP Adaptive… (Lihong Geng)

905

fluctuations in bitrate. In [9], an exponential function was adopted to dynamically control the
weighting coefficient of the method presented in [6]. This method offered smooth estimation in
the case of short-term fluctuations at a relatively high throughput. However, at low throughput,
the estimated throughput of this method was sensitive to such fluctuations.

Regarding bitrate selection, in [10], the authors achieved the smallest changes in video
quality and the fewest interruptions by preserving the minimum buffer length. However, when
the mismatch between the available throughput and the video bitrate was significant, this
algorithm appeared to suffer from abrupt changes in bitrate. Additionally, it required too much
time to adjust the quality in accordance with the available throughput. A quick boot algorithm
was proposed to solve this type of problem in [11]. Furthermore, the authors used a fixed-
interval buffer model to keep the bitrate unchanged whenever the buffer size was within a preset
interval. Although this method reduced the number of changes in bitrate, it required a large
buffer to cope with long-term variations in the available throughput. In [12], the authors only
used the buffer to effectively reduce the rebuffer rate, suggesting that the current buffer level
was sufficient for an adaptation algorithm in the steady state. In addition to the current buffer,
we emphasize the importance of the variation range of the current bitrate in an adaptation
algorithm.

In this paper, we present a novel bitrate adaptation algorithm for HTTP adaptive
streaming. Our bitrate adaptation algorithm includes a throughput estimation method and a
bitrate selection algorithm. The contributions of the paper are three-fold. First, with the intent of
reacting smoothly to short-term fluctuations and quickly to large fluctuations, a novel throughput
estimation method is proposed based on predicting the difference between the estimated and
instantaneous throughputs. Second, to provide users with a high and relatively smooth video
quality, we propose an innovative bitrate selection algorithm based on piecewise functions to
define the variation range of the current bitrate. Finally, to verify the performance of our bitrate
adaptation algorithm, we report the implementation of a fully functional HLS system.

The paper is organized as follows. In Section 2, we first provide an overview of HLS.
Section 3 describes our bitrate adaptation algorithm. In Section 4, the experiments are
discussed in detail. Finally, conclusions and future work are addressed in Section 5.

2. Overview of HLS

HLS is a media streaming protocol based on HTTP implemented by Apple. It is widely
used by video streaming providers for its easy deployment, dynamical adaptability and strong
penetrability [13]. Conceptually, A HLS system has three parts: a server, a distribution system,
and a client. The server is responsible for encoding the input streams as MPEG-4 (AAC audio
and H.264 video), encapsulating them in MPEG-2 TS format, and preparing the encapsulated
media for distribution. The distribution system is a standard web server which is responsible for
accepting and responding client’s requests. The server and distribution system are integrated as
HLS server in this paper. The client is responsible for choosing the appropriate media to
request, downloading them, and then reassembling them to present.

Adaptation is an important part of HLS [14]. On the HLS server side, the original video
content is encoded into multiple alternatives (versions) at different bitrates. Then, each
alternative is further partitioned into a series of small segments (chunks) with the same duration.
Simultaneously, the characteristics of each alternative such as bitrate, coding, and resolution
are recorded in the manifest file with the, m3u8 extension. All the media segments and manifest
files are stored in the distribution system. On the HLS client side, according to the status of the
terminal/network, the most appropriate alternative is downloaded through the sending of
consecutive HTTP requests. Therefore, the client eventually gets the whole video consisting of
the segments at different bitrates.

3. The Proposed Bitrate Adaptation Algorithm

In this section, our bitrate adaptation algorithm, which consists of throughput estimation
and bitrate selection, is described in detail. As stated above, multiple alternatives of a
segmented sequence at different bitrates are stored in the server. Each segment contains τ
seconds of playback. The set of bitrates for m different video qualities is denoted by

  ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 3, September 2016 : 904 – 915

906

{ }1 2, , mR R R R=  , where iR is the i th bitrate in R . We assume that i jR R< if i j< . The
client downloads the segments in chronological order, and all downloads are non-preemptive,
i.e., the download of segment i cannot begin until segment 1i − has been completely
downloaded. After each fragment is downloaded, our throughput estimation method is invoked
to estimate the available throughput. Then, the proposed bitrate adaptation algorithm will run the
bitrate selection algorithm to select the most appropriate bitrate for the next segment. The
details of the algorithm are described below.

3.1. Throughput Estimation Method

Throughput estimation is one of the most crucial concerns in adaptive streaming [11].
Usually, the available throughput is calculated by dividing the data size of a segment by its
delivery duration, as denoted by:

i
i

i

S
T

t
= (1)

Where iS and it are the size and download time, respectively, of the i th segment and iT is the
available throughput for the i th segment. Below, we call iT the instantaneous throughput. The
simplest method to estimate the available throughput is merely to use the instantaneous
throughput. This method yields a stable buffer level; however, the video quality fluctuates. A
smoothing strategy was adopted in [15] to solve the problem of fluctuations. However, this
method reacts slowly to large fluctuations, which may result in playback freezes. In [9], a
dynamic weighting coefficient was applied in the smoothing method to solve this problem.
Although this method possesses the advantages of both methods discussed above, it still yields
fluctuating estimates when the available throughput is low.

The goal of our method is to achieve a throughput estimation that 1) is stable in the
case of short-term fluctuations and 2) reacts quickly to large fluctuations. The underlying
principle of our method is as follows:

1

e e
i i iT T D+ = + (2)

Where 1

e
iT + is the estimated throughput for the (1)i + th segment and e

iD is the predicted
difference value. A precise prediction of e

iD yields a precise 1
e

iT + . e
iD is defined by (3) and (4) in

our method:

e
i i iD T T= − (3)

*e

i iD D δ= (4)

Where iD reflects the degree of fluctuation of the throughput and δ is a correction term that
takes values on the interval ()0, 1 . For short-term fluctuations, iD is small and δ should be
closer to 1 to bring 1

e
iT + closer to e

iT , resulting in a smoother estimation. For large fluctuations,

iD is large and a δ closer to 0 is required to bring 1
e

iT + closer to iT to allow a more rapid
response to large fluctuations. In summary, the value of the parameter δ is strongly related to

iD in our analysis. The control functions relating δ and iD are designed as shown in (5) and
(6):

i
nor

D
T

ρ = (5)

0()

1
1 MNe ρ ρδ −=
+

 (6)

TELKOMNIKA ISSN: 1693-6930 

Towards Smooth and High-Quality Bitrate Adaptation for HTTP Adaptive… (Lihong Geng)

907

Where ρ is the normalization value of iD and norT is a normalization factor; M and 0ρ are the
steepness and midpoint of the control function (6), respectively; N is a function of the buffer
occupancy. In our method, we assume that the fluctuations are short-term when iD is less than
10% of norT (i.e., 0.1ρ <) and the fluctuations are large when iD is larger than 20% of norT (i.e.,

0.2ρ >). M and 0ρ need to be set properly to make sure that a ρ smaller than 0.1 will yield a
δ closer to 1, in other words, our method gets a smooth estimation for short-term fluctuations;
by contrast, a ρ larger than 0.2 will obtain a δ closer to 0, suggesting that our method quickly
responds to large fluctuations. Furthermore, in case of buffer draining-up, N will dominate the
speed of control in (6) when the buffer level is lower than the minimum threshold. It is defined as
expressed in (7) and (8):

cur min

max min

B B
B B

µ
−

=
−

 (7)

1 0

100 0
N

µ
µ

µ

 >= 
 ≤

 (8)

Where curB is the current buffer level which is measured in seconds, minB and maxB are the
minimum and maximum buffer thresholds, respectively, and µ is the buffer occupancy.

3.2. Bitrate Selection Algorithm

In this section, given the estimated throughput as described above, we propose an
innovative bitrate selection algorithm that considers the variation range of the current bitrate to
achieve a high and relatively smooth video quality. Besides, buffer underflow and overflow are
considered in our algorithm.

To achieve our goal, we studied the Just Noticeable Difference (JND). The JND [16] is
defined to describe the smallest perceptual difference/change between two stimuli (e.g., two
versions of a video) that could be detected by human perception; this work concluded that if the
video versions were equally spaced by 3 JND units, a separation that yielded no obvious
difference in practice, the typical number of versions was 4 to 7. On the basis of this conclusion,
the bitrates of the Football and Soccer sequences were spaced by 1.5 JND units in [17],
resulting in bitrates of 3000, 1495, 1038, 773, 640, 550, 427, 322, 260, and 222 Kbps; this list of
bitrates, which belonged to fast-motion group, should thus also be safe for slow-motion group.
Based on these conclusions, two piecewise functions are designed to determine the safe
variation range of the current bitrate. Equations (9) and (10) present these functions.

_

100
200
400

1400

cur LowTh

LowTh cur MidTh
chg up

MidTh cur HigTh

cur HigTh

R R
R R R

R R R R
R R

<
 ≤ <=  ≤ <
 ≥

 (9)

_

100
(, 200)
(, 200)

(, 400)

cur LowTh

cur LowTh LowTh cur MidTh
chg down

cur MidTh MidTh cur HigTh

cur HigTh cur HigTh

R R
min R R R R R

R max R R R R R
max R R R R

≤
 − < ≤=  − < <
 − ≥

 (10)

Where curR is the current bitrate; LowThR , MidThR and HigThR are three bitrate thresholds that
satisfy LowTh MidTh HigThR R R< < ; the functions min and max return the minimum and maximum
value, respectively, between their two inputs; and the return values, _chg upR and _chg downR , define

  ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 3, September 2016 : 904 – 915

908

the safe variation range of the current bitrate. If the available throughput is increasing, equation
(9) is used to determine the variation range, i.e., _chg upR . By contrast, if the available throughput
is decreasing, equation (10) is used to determine _chg downR . We convert /chg_up chg_downR R into the
corresponding bitrate index with equation (11):

_ _(/ ,)chg chg up chg down curIndex f R R R= (11)

Where f is a conversion function and chgIndex is the safe variation range of the bitrate index
corresponding to /chg_up chg_downR R .

Based on the safe variation range of the current bitrate as determined above, the
procedures performed in our algorithm are described in algorithm 1. Here, bestRIndex is initialized
as the bitrate index with the highest possible value that is lower than the current estimated
throughput; in other words, it satisfies:

{ }|

best

e
RIndex k k kR max R R T R R= < ∈， (12)

lastRIndex is the bitrate index of the last segment. DifIndex is the absolute value of oriD

which is equal to the difference between bestRIndex and lastRIndex . minB , midB and maxB are buffer
thresholds, measured in seconds, which satisfy min mid maxB B B< < .

The input arguments of our algorithm include the instantaneous throughput (T), the
estimated throughput (eT), the current buffer level (curB) and the bitrate index of the last
segment (lastRIndex). The output argument is the bitrate index for the next segment (nextRIndex).

When 0oriD ≥ , an equal or higher bitrate can be requested for the next segment. The
current buffer level is considered in this case. If cur midB B≤ , it is not wise to increase the bitrate
immediately because the buffer level is still insufficient. Thus, we leave the bitrate unchanged (

next lastRIndex RIndex=). If cur midB B> , then it is safe to increase the bitrate. As described above, it
is necessary to ensure that every change in quality remains within the safe variation range of
the current bitrate. Thus, DifIndex is compared with chgIndex . If chgDifIndex Index≥ , it means
that bestRIndex is much higher than lastRIndex . If we choose bestRIndex to follow the current
available throughput, an obvious change in quality will be noticed by the user. Thus, we choose

last chgRIndex Index+ as the bitrate index for the next segment, which provides a relatively rapid
response to the available throughput while maintaining a user-friendly quality change. If

< chgDifIndex Index , then bestRIndex can be chosen safely. However, when the buffer level is
higher than the maximum buffer threshold and bestRIndexR is less than the estimated throughput, a

scheme to avoid buffer overflow is required. We increase bestRIndex by 1 to prevent buffer
overflow. After the application of this overflow-control measure, DifIndex will be less than or
equal to chgIndex , which is still a safe quality change.

When 0oriD < , the current available throughput is insufficient to maintain the previous
video quality. Bitrate reduction is inevitable. The current buffer level should be carefully
considered in this case. If cur minB B≤ , then the buffer can be easily emptied if the selected bitrate
is higher than the available throughput. We incrementally decrease bestRIndex by 1 in a loop until

 bestRIndexR is less than the current available throughput. This strategy will cause the buffer level to
increase during the download duration of the next segment to prevent playback freezes, but an
unsafe change in quality may occur. If the buffer level satisfies Bmin cur maxB B< ≤ , the situation is
relatively safe and a somewhat conservative scheme is adopted. First, we determine the best
possible video quality (lastRIndex k−) by decreasing bitrate level in a loop to ensure that at least
a minimum buffer is preserved. Then, a bitrate level that is no higher than lastRIndex k− is

TELKOMNIKA ISSN: 1693-6930 

Towards Smooth and High-Quality Bitrate Adaptation for HTTP Adaptive… (Lihong Geng)

909

adopted. If DifIndex is less than or equal to chgIndex , it reveals that the available throughput has
not changed considerably. It is unnecessary to switch to bestRIndex to adapt to the decreasing
throughput. Therefore, nextRIndex is set to the minimum value between 1bestRIndex + and

lastRIndex k− . If DifIndex is larger than chgIndex , then a large throughput fluctuation has
occurred. To adapt to the decreasing throughput quickly and safely, the maximum change in
index corresponding to the safe variation range, chgIndex , is chosen. In accordance with the
limits imposed above, nextRIndex is set equal to the minimum value between last chgRIndex Index−
and lastRIndex k− . Finally, if cur maxB B> , then a more conservative scheme is adopted to reduce
the buffer. If chgDifIndex Index≤ , then nextRIndex is simply set equal to the last bitrate lastRIndex to
ensure a smooth video quality. If chgDifIndex Index> , then nextRIndex is decremented as

1lastRIndex − , just in case an abrupt change in bitrate occurs when the buffer level switches from
the current buffer state to the state <min cur maxB B B≤ .

It should be noted that nextRIndex must lie in a reasonable range of []1, m in our
algorithm.

4. Experiments and Discussion

In this section, we give an overview of the experimental methodology and evaluate our
bitrate adaptation algorithm on our HLS system. After reporting the results of the experiments,
we present a simple discussion of our algorithm.

4.1. Experiment Setting

The structure of our HLS system is depicted in Figure 1 and consists of three
components, i.e., a HLS server, a HLS client and wired local area network (LAN). On the server
side, the original video was encoded in CBR mode to produce 20 available bitrate versions from
100 to 2000 Kbps with a step of 100 Kbps. In addition, each version was chopped into
segments of the same duration of 5 seconds (i.e., =5τ). All segments and manifest files were
stored on the version 2.4.9 Apache HTTP server that is integrated into Mac Mini 10.10.2.
Moreover, the server’s Timeout was set to 60 s for alive connections. On the client side, the
client was implemented on the Android 4.4.2 platform. All adaptation algorithms were
implemented on the client. Three segments with the fourth bitrate index were buffered before
the start of video playback. Each subsequent request was sent after the last segment had been
completely received. Particularly, when the buffer level would be larger than the target buffer, an
idle delay before the sending of the next request was set to account for a limited buffer capacity.
In our experiments, the target buffer was set to 7 segment durations. Wired LAN is built by a
TP-LINK router and there are no other devices except a HLS server and a HLS client in this
LAN.

Wired LAN

HLS Server

HLS Client

DummyNet

Figure 1. Testbed organization for experiments

For a fair comparison, different algorithms should be evaluated under the same network

conditions. The DummyNet network emulator [18] was used to control the available bandwidth.
This emulator is easily configured on Windows. To control the available bandwidth on the client
side in a simple manner, both DummyNet and our client were installed on a Windows 7

  ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 3, September 2016 : 904 – 915

910

Professional desktop with a 3.10 GHz Intel Core i3 CPU and 4 GB of RAM. In addition, an
Android virtual machine was needed to run our client on Windows.

4.2. Throughput Estimation Experiment
Before our bitrate adaptation algorithm was investigated, our throughput estimation

method was evaluated separately in this experiment. The two throughput estimation methods
proposed in [7] and [9] were implemented to demonstrate the effectiveness of our method. For
simplicity, the methods of [7] and [9] are called the DFI method and the Thang method,

Algorithm 1 Bitrate selection algorithm
 Input: , , , las

e
cur tRIndexT T B

 Output: nextRIndex
1:

bestori lastRIndex RIndexD −=
2:

next bestRIndex RIndex=
3: if 0oriD ≥ then
4: if cur midB B≤ then
5: next lastRIndex RIndex=
6: else
7: if chgDifIndex Index≥ then
8: next last chgRIndex RIndex Index= +

9: else
10: if & &

best

e
cur max RIndexB R TB ≥ < then

11: 1next bestRIndex RIndex= +
12: end if
13: end if
14: end if
15: else
16: if cur minB B≤ then
17: while

bestRIndexR T> then

18: 1best bestRIndex RIndex= −

19: end while
20: next bestRIndex RIndex=
21: else if cur maxB B≤ then

22: 0k =
23: while ()(/ 1)*

lastRIndex k cur minR T B Bτ− − > − then

24: 1k k= +
25: end while
26: if chgDifIndex Index≤ then
27: ()1,next last bestRIndex min RIndex k RIndex− +=
28: else
29: (,)next last last chgRIndex min RIndex k RIndex Index= − −
30: end if
31: else
32: if chgDifIndex Index≤ then

33: next lastRIndex RIndex=
34: else
35: 1 next lastRIndex RIndex −=
36: end if
37: end if
38: end if

TELKOMNIKA ISSN: 1693-6930 

Towards Smooth and High-Quality Bitrate Adaptation for HTTP Adaptive… (Lihong Geng)

911

respectively. Complex network conditions with both large fluctuations and short-term
fluctuations were emulated using DummyNet.

In our method, in order to obtain a smooth estimation when 0.1ρ < and an aggressive
estimation when 0.2ρ > , M and 0ρ were set to 21 and 0.167, respectively. In practice, we
regard the fluctuations which are less than one step of bitrates (100 Kbps in our experiments) as
the short-term fluctuations. Therefore, norT was set to 1000 Kbps according to the assumption
below equation (6) in section 3.1. minB and maxB were set to 1 and 4 segment durations,
respectively. The experimental settings for the DFI method and the Thang method were set as
described in [7] and [9]. Specifically, in the DFI method, c was set to 0.167 for fairness and ε
was set to 0.05 to obtain the optimal results.

(a) Estimated throughput

(b) Adapted bitrate

(c) Buffer level

Figure 2. Comparison of different throughput estimation methods

Figure 2(a), Figure 2(b) and Figure 2(c) compare the results in terms of the estimated
throughput, adapted bitrate and buffer level, respectively. Note that the bandwidth curve in each
of the following figures represents the theoretical capacity of the link (controlled by DummyNet);
the estimated throughputs are the results of the different throughput estimation methods; the
adapted bitrate is the highest value that is lower than the estimated throughput, shown as
equation (12); and the buffer level, which is shown on the right vertical axis in Figure 2(c),
represents the current buffer state in seconds.

The following behaviors can be observed from those figures. In the case of large
fluctuations (e.g., 60-80 s and 220-240 s), the estimated throughputs of all methods respond
quickly as a result of the dynamic control strategies. For this reason, they all have reasonably
safe buffers (higher than 8 s). However, in the case of short-term fluctuations (e.g., 115-190 s
and 257-332 s), the throughput estimated by the DFI method varies frequently with the
fluctuating bandwidth, which causes fluctuations in the adapted bitrates. The Thang method
obtains smooth estimates at high bandwidths (e.g., 257-332 s) but fluctuating estimates when
the bandwidth is low (e.g., 115-190 s). By contrast, the proposed method obtains smooth
estimates for all short-term fluctuations by virtue of the appropriate design of the normalization
factor norT . Therefore, the proposed method achieves the smoothest adapted bitrate. In short,

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Time (s)

Bi
tra

te
 (K

bp
s)

Bandwidth
DFI Method
Thang Method
Proposed Method

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Time (s)

Bi
tra

te
 (K

bp
s)

Bandwidth
DFI Method
Thang Method
Proposed Method

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Bit
rat

e (
Kb

ps
)

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45

50

55

60

Time (s)

Bu
ffe

r le
ve

l (s
)

Bandwidth
DFI Method
Thang Method
Proposed Method

  ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 3, September 2016 : 904 – 915

912

the proposed method achieves a smooth response to short-term fluctuations and a fast
response to large fluctuations.

4.3. Bitrate Adaptation Algorithm Experiment

The second experiment was conducted to investigate the performance of our bitrate
adaptation algorithm, i.e., the bitrate selection algorithm given the throughput estimation method
investigated above. As described above, our bitrate selection algorithm already includes a
strategy for preventing buffer underflow. Therefore, to best illustrate the performance of our
bitrate selection algorithm, the parameter N was set to 1 for this experiment. The other settings
were the same as in the previous experiment. Furthermore, in our bitrate selection algorithm, we
set minB , midB and maxB to 1.5, 2 and 6 segment durations, respectively. The bitrate thresholds

LowThR , MidThR and HigThR were set to 700, 1000 and 1500 Kbps, respectively.
 Another bitrate adaptation algorithm with good performance, QAAD [10], which

estimates throughput based on samples of the download throughput, was implemented for
comparison. The experimental settings were the same as in [10]. In particular, the predefined
marginal buffer length µ was set to 5 segment durations and the minimum buffer length δ was
set to 1.5 segment durations for this experiment.

Complex network conditions with both large fluctuations and short-term fluctuations
were emulated using DummyNet. The results in terms of the adapted bitrates and buffer levels
are compared in Figure 3. The adapted bitrates are the outputs of the bitrate adaptation
algorithms.

From Figure 3(a), we can see that when bandwidth is sharply decreasing (e.g., 186-206
s and 301-321 s), the QAAD algorithm result in large changes in bitrate (e.g., 214-231 s and
342-358 s) because it initially attempts to change quality with the smallest possible step in
bitrate. By contrast, the proposed algorithm attempts to ensure that each quality change is safe.
This measure achieves smoother changes in quality. Moreover, the proposed algorithm has a
faster reaction time in reaching the optimal bitrate (e.g., 0-48 s, 266-323 s and 364-419 s).
Thus, the proposed algorithm yields a higher adapted bitrate. From Figure 3(b), it is evident that
the proposed algorithm achieves a safe buffer.

(a) Adapted bitrate

(b) Buffer level

Figure 3. Comparison of different bitrate adaptation algorithms

To more clearly illustrate the advantages of the proposed algorithm, five additional
experiments were conducted. We evaluated the performance based on the average values of
the five sets of results. Several statistics regarding the tested algorithms are provided in Table
1. The bitrate values are shown in the first three rows in units of Kbps. The next three rows
concern the buffer values, and the results in terms of quality changes are shown in the last two
rows. The “Maximum change in bitrate” in the third row is the largest bitrate difference between
any two consecutive segments. The standard deviation (STD) in the second and fifth rows is
used to quantify the amount of variation of the bitrate and buffer. The “Number of unsafe quality

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Time (s)

Bi
tra

te
 (K

bp
s)

Bandwidth
QAAD Method
Proposed Method

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Bi
tra

te
 (K

bp
s)

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Time (s)

Bu
ffe

r l
ev

el
 (s

)

Bandwidth
QAAD Method
Proposed Method

TELKOMNIKA ISSN: 1693-6930 

Towards Smooth and High-Quality Bitrate Adaptation for HTTP Adaptive… (Lihong Geng)

913

changes” reported in the last row refers to changes in quality that are outside of the safe
variation range of the current bitrate.

Table 1. Statistics of Average Values of Five Experiments
Statistics QAAD Proposed algorithm Improvement rate
Average bitrate (Kbps) 1122 1232 9.8%
STD of bitrates (Kb/s) 532 450 15.4%
Maximum change in bitrate (Kbps) 937 408 56.5%
Average buffer level (s) 29.8 21.7 -27.2%
STD of buffer level (s) 7.78 7.01 9.9%
Number of interruptions 0 0 0%
Number of quality changes 52.6 31.4 40.3%
Number of unsafe quality changes 2.6 2 23.1%

From the statistics, we can see that the QAAD algorithm has a higher buffer level

because of its conservative strategy and that neither algorithm suffers any interruptions. In fact,
a higher buffer with no interruptions does not provide a better QoE for the user. Because the
user will not notice a change in the buffer level unless the buffer is exhausted. As expected, the
proposed algorithm results in fewer (unsafe) quality changes, smaller maximum change in
bitrate and lower STD of bitrates, which implies that our bitrate adaptation algorithm can obtain
smoother video quality. Furthermore, the proposed algorithm achieves a higher average bitrate.
All of these results confirm that the proposed algorithm achieves a considerable advantage over
the QAAD algorithm.

4.4. Discussion

As mentioned above, a throughput estimation method should be stable in the case of
short-term fluctuations while also reacting quickly to large fluctuations. The method proposed in
[6] achieves smooth estimation for short-term fluctuations but fails to cope with large
fluctuations. The DFI method and the Thang method respond quickly to large fluctuations but
yield fluctuating estimates in the case of short-term fluctuations. The results of the first
experiment show that our throughput estimation method behaves well for both short-term
fluctuations and large fluctuations.

In our throughput estimation method, norT is decided by the step of bitrates. All the
steps are equal in our experiments. When the steps are not equal, this situation needs further
research; for example, the smallest step can be chosen to decide norT . Besides, from the
observations, we note that the normalization factor norT plays an important role in the estimation
of short-term fluctuations and the parameter M plays an important role in the estimation of
large fluctuations. With further research, a dynamic scheme can be designed for determining

norT and M based on the characteristics of different networks.
The algorithm proposed in [19] attempts to maintain a stable bitrate to ensure a smooth

bitrate. However, this strategy causes eventual abrupt changes in bitrate in the case of large,
rapid decreases in the available throughput. When the available throughput is increasing, the
QAAD algorithm changes the quality with the smallest possible step to achieve a smooth bitrate.
However, this strategy does not take full advantage of the available bandwidth. The proposed
bitrate adaptation algorithm changes the quality within the safe variation range of the current
bitrate. This strategy avoids abrupt change in bitrate and gets a high bandwidth utilization. The
results of the second experiment indicate that our algorithm can get higher average quality and
smoother video quality. It should be noted that the thresholds used to define our piecewise
function are suitable for slow-motion [16] videos and some fast-motion videos. Thus, for videos
with faster motion, these thresholds should be reset based on the JND.

In most bitrate adaptation algorithms, m different video qualities must inevitably be
traversed to select the best bitrate (bestRIndexR). This is also true of our algorithm. Therefore, our

algorithm’s time complexity is ()O m , identical to that of the QAAD algorithm.
In this paper, we focused purely on improving the performance of our bitrate adaptation

algorithm for a single client. However, the case of multiple clients is both more practical and
more challenging [20]. The question of how to achieve a balance between efficiency and

  ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 3, September 2016 : 904 – 915

914

fairness of the allocation of throughput resources poses a considerable challenge when multiple
clients share a common link. This will be an interesting direction for future research.

5. Conclusion and Future Work

In this paper, a novel bitrate adaptation algorithm which includes a throughput
estimation method and a bitrate selection algorithm was proposed for HTTP adaptive streaming.
We implemented our throughput estimation method by predicting the difference between the
estimated and instantaneous throughputs. Our bitrate selection algorithm was realized based on
piecewise functions to determine the variation range of the current bitrate. The proposed
method and algorithm were tested on our HLS system over a network emulated using
DummyNet. The experimental results show that 1) our throughput estimation method yields a
smooth response to short-term fluctuations and a fast response to large fluctuations and 2) our
bitrate adaptation (selection) algorithm results in smoother changes in quality with a higher
average quality.

We have verified the good performance of our bitrate adaptation algorithm for a single
client, and in future research, we will explore its feasibility for multiple clients, considering the
efficiency and fairness of the allocation of throughput resources.

Acknowledgements

This work was partly supported by the National 863 Project (No. 2015AA015802) and
the Special Fund for Strategic Pilot Technology Chinese Academy of Sciences (No.
XDA06040501). The authors would like to thank the anonymous reviewers for their valuable
comments.

References
[1] Yanan Z, Xiangyang G, Wendong W, Xirong Q. A Rate Adaptive Algorithm for HTTP Streaming. 2012

IEEE 2nd International Conference on Cloud Computing and Intelligence Systems. Hangzhou. 2012:
529-532.

[2] Kamel N, Lanet JL. Analysis of HTTP Protocol Implementation in Smart Card Embedded Web Server.
International Journal of Information & Network Security. 2013; 2(5): 417-428.

[3] Kupka T, Halvorsen P, Griwodz C. An Evaluation of Live Adaptive HTTP Segment Streaming Request
Strategies. IEEE Conference on Local Computer Networks. Bonn. 2011: 604-612.

[4] Malinovski T, Trajkovik V, Vasileva M. Students’ Perceptions during Integration of Computer Games in
Primary Education: QoE Analysis. International Journal of Informatics and Communication
Technology. 2014; 3(1): 13-22.

[5] Bin L, Qinghua Z, Weizhan Z. A Rate Adaptation Solution for Distance Education System over HTTP
Streaming. 2013 IEEE International Conference on High Performance Computing and
Communications. Zhangjiajie, Hunan, China. 2013: 2385-2389.

[6] Akhshabi S, Begen AC, Dovrolis C. An Experimental Evaluation of Rate-Adaptation Algorithms in
Adaptive Streaming over HTTP. Proceedings of the second annual ACM conference on Multimedia
systems. San Jose, CA, United states. 2011: 157-168.

[7] Kim YH, Shin J, Park J. Design and Implementation of a Network-Adaptive Mechanism for HTTP
Video Streaming. ETRI Journal. 2013; 35(1): 27-34.

[8] Gerla M, Ng BKF, Sanadidi MY, Valla M, et al. TCP Westwood with Adaptive Bandwidth Estimation to
Improve Efficiency/Friendliness Tradeoffs. Computer Communications. 2004; 27(1): 41-58.

[9] Truong CT, Quang-Dung H, Jung WK, Anh TP. Adaptive Streaming of Audiovisual Content Using
MPEG DASH. IEEE Transactions on Consumer Electronics. 2012; 58(1): 78-85.

[10] Suh D, Jang I, Pack S. QoE-Enhanced Adaptation Algorithm over DASH for Multimedia Streaming.
2014 International Conference on Information Networking. Phuket. 2014: 497-501.

[11] Yuming C, Xiaoquan Y, Jia W, Li S. A QoE Friendly Rate Adaptation Method for DASH. Broadband
Multimedia Systems and Broadcasting (BMSB). Beijing. 2014: 1-6.

[12] Huang TY, Johari R, McKeown N, Watson M. A Buffer-Based Approach to Rate Adaptation: Evidence
from a Large Video Streaming Service. Proceedings of the 2014 ACM conference on SIGCOMM.
Chicago, IL, United states. 2014: 187-198.

[13] Stockhammer T. Dynamic Adaptive Streaming over HTTP-Standards and Design Principles. 2nd
Annual ACM Multimedia Systems Conference, MMSys'11. San Jose. 2011: 133-143.

[14] Adzic V, Kalva H, Furht B. Optimizing Video Encoding for Adaptive Streaming over HTTP. IEEE
Transactions on Consumer Electronics. 2012; 58(2): 397-403.

TELKOMNIKA ISSN: 1693-6930 

Towards Smooth and High-Quality Bitrate Adaptation for HTTP Adaptive… (Lihong Geng)

915

[15] Gouache S, Bichot G, Bsila A, Howson C. Distributed & Adaptive HTTP Streaming. 2011 IEEE
International Conference on Multimedia and Expo. Barcelona. 2011: 1-6.

[16] Truong CT, Hoc XN, Anh TP, Nam PN. Perceptual Difference Evaluation of Video Alternatives in
Adaptive Streaming. 2012 Fourth International Conference on Communications and Electronics
(ICCE). Hue. 2012: 322-326.

[17] Truong CT, Hung TL, Anh TP, Yong MR. An Evaluation of Bitrate Adaptation Methods for HTTP Live
Streaming. IEEE Journal on Selected Areas in Communications. 2014; 32(4): 693-705.

[18] Rizzo L. Dummynet: A Simple Approach to the Evaluation of Network Protocols. ACM SIGCOMM
Computer Communication Review. 1997; 27(1): 31-41.

[19] Miller K, Quacchio E, Gennari G, Wolisz A. Adaptation Algorithm for Adaptive Streaming over HTTP.
2012 19th International Packet Video Workshop (PV). Munich. 2012: 173-178.

[20] Jiang J, Sekar V, Zhang H. Improving Fairness, Efficiency, and Stability in Http-Based Adaptive Video
Streaming with Festive. Proceedings of the 8th international conference on Emerging networking
experiments and technologies. Nice, France. 2012: 97-108.

