
TELKOMNIKA, Vol. 15, No. 3, September 2017, pp. 1040 ∼ 1047
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/telkomnika.v15.i3.6513 � 1040

Application Profiling and Mapping on
NoC-based MPSoC Emulation Platform on

Reconfigurable Logic

Jia Wei Tang*, Yuan Wen Hau**, Nasir Shaikh-Husin*, and Muhammad Nadzir Marsono*
*Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

**IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti
Teknologi Malaysia, Johor, Malaysia

*Corresponding author, e-mail: jwtang2@live.utm.my

Abstract
In network-on-chip (NoC) based multi-processor system-on-chip (MPSoC) development, applica-

tion profiling is one of the most crucial step during design time to search and explore optimal mapping.
Conventional mapping exploration methodologies analyse application-specific graphs by estimating its run-
time behaviour using analytical or simulation models. However, the former does not replicate the actual
application run-time performance while the latter requires significant amount of time for exploration. To map
applications on a specific MPSoC platform, the application behaviour on cycle-accurate emulated platform
should be considered for obtaining better mapping quality. This paper proposes an application mapping
methodology that utilizes a MPSoC prototyped in Field-Programmable Gate Array (FPGA). Applications are
implemented on homogeneous MPSoC cores and their costs are analysed and profiled on the platform
in term of execution time, intra-core communication and inter-core communication delays. These metrics
are utilized in analytical evaluation of the application mapping. The proposed analytical-based mapping is
demonstrated against the exhaustive brute force method. Results show that the proposed method is able to
produce quality mappings compared to the ground truth solutions but in shorter evaluation time.

Keywords: Embedded system, application mapping, multi-processor system-on-chips (MPSoCs), through-
put constraint.

Copyright c© 2017 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
Multi-Processor System-on-Chips (MPSoCs) is commonly used in modern embedded

systems such as smartphones and tablets as well as in other diverse fields such as multimedia
and networking applications to perform time-constrained tasks. Mapping of time critical applica-
tions is a crucial step in design time to provide the highest possible system performance. The
problem of mapping applications onto MPSoC is one of the biggest challenge embedded system
programmers face nowadays [1–3]. An application is commonly specified as a data-flow graph
consisting of tasks that communicate between them, on the other hand, an MPSoC platform is
described by the number of cores, the type of cores (in heterogeneous platform), and their com-
munication topology or infrastructure. The design space exploration process takes the application
graph as input and assigns all tasks to processing cores on the desired MPSoC platform to find
the best performance mapping.

Methods for evaluating each mapping performance in design space can be categorized
into three types [4]: estimation from analytical model, measurement from simulation model,
and measurement from implementation prototype. Analytical estimation is the fastest evalua-
tion method but with limited accuracy as it does not sufficiently replicate the system behaviour.
Simulation-based measurement exists between two extremes, i.e. slow with high accuracy and
fast but less accurate. On the contrary, prototype-based evaluation provides the highest accuracy
but requires long development time.

Received February 27, 2017; Revised June 28, 2017; Accepted July 21, 2017

TELKOMNIKA ISSN: 1693-6930 � 1041

In most cases, a certain application is desired to be executed on a specific MPSoC plat-
form. As the task execution and communication delays vary for different MPSoC platforms, map-
ping that solely depends on the costs for executing application specification behaviour may not
be sufficient to produce high quality mapping when considering the MPSoC physical interconnect
fabric. The behaviour on the platform must be considered and profiled thoroughly to aid applica-
tion mapping exploration process. Hence, an application profiled in a prototype-based platform
can improve profiling precision over the analytical-based mapping while having fast evaluation
speed.

This paper presents a application mapping methodology that utilizes field-programmable
gate array (FPGA) emulation as the evaluation platform to optimize the application mapping for the
highest throughput. Applications are analysed and profiled on the emulation platform to estimate
their implemented costs in term of execution, intra-core communication and inter-core commu-
nication delays. The profiled application costs are used in improving the accuracy of analytical-
based mapping. The proposed methodology is demonstrated by mapping several test applications
on a 3×3 meshed network-on-chip (NoC) based MPSoC prototyped in FPGA.

The rest of this paper is organized as follows. Section 2. presents the related works in
application mapping. Section 3. discusses the proposed throughput aware application mapping
methodology including the execution trace analysis, platform parameters extraction and mapping
exploration steps. Section 4. presents the result of the proposed mapping approach on different
test cases and Section 5. concludes this paper.

2. Related works
Task mapping technique can be classified into design time mapping, run-time mapping

and hybrid mapping. In design time mapping [5–9], the mapping process is performed off-line
to facilitate better decision in using system resources. Design time mapping is suitable for static
workload scenarios having a predefined task graph and static platform (i.e., both applications and
platform do not change in time). Run-time mapping [10–13] on the contrary, is able to handle
dynamism of run-time workload such as insertion or removing new applications into or from the
system, as well as the dynamic platform behaviour due to run-time faults. However, run-time task
mapping is performed using limited on-line processing resource while making a quick decision
without sufficient mapping exploration, thus may produce low-quality mapping.

In addition, hybrid mapping has also been proposed in many different works [14–19] by
combining design time and run-time techniques. Hybrid mapping explores best mapping of tasks
during design time for different scenarios (constraints conditions) while chooses the most suitable
mapping at run-time. However, these conventional approaches in application mapping assume
a specific well-defined program behaviour, often specified in task graph and does not consider
platform dependent parameters, such as the changes in communication delay and communication
volume during dynamic mapping exploration.

Most mapping methodologies in literatures e.g. [5–13] assumed a specific program exe-
cution while the communication cost was considered constant across platform. As practical be-
haviour of applications may differ compared to its specified task graph, there are different methods
in literatures extracting application run-time metrics prior to the mapping exploration. Trace anal-
ysis technique was used in [20] to find the execution behavior for each mapping and examine
their differences. Singh et al. [21] used the application behaviour from trace analysis to optimally
map multiple applications on the same MPSoC. To our best knowledge, there is no work that
profiles and maps application based on execution, intra-core and inter-core communication on an
emulation platform.

3. Proposed Application Mapping Methodology
The flow of the proposed application mapping approach is depicted in Figure 1. Unlike

conventional mapping methodology which solely depends on the costs specified in application
task graph, the proposed approach considers the application practical behaviour to better estimate

Application Profiling and Mapping on NoC-based MPSoC ... (Jia Wei Tang)

1042 � ISSN: 1693-6930

the mapping performance. The proposed methodology for application mapping are as follows:

1. Application Profiling – The predefined application are executed on the targeted platform
to measure its practical implementation costs. Application are profiled in term of execution
and communication costs in time delay (cycles).

2. Application Mapping – Application mapping design space exploration is performed to op-
timize overall throughput. In order to evaluate each mapping performance, execution traces
are analysed. An analytical model is formulated based on the profiled application costs are
used to estimate the mapping performance during the design space exploration.

Application Profiling

Application

t0 t1

t2 t3

t4

MPSoC in FPGA

Application Specification Platform Specification

Mapping Design Space Exploration

Application Profiles

 Execution Traces Analysis

execution, x
intra-core comm., ca
inter-core comm., ce

emulate

Current Mapping

Core 1:

Core 2:

Core 3:

time
exec. delayxi cij comm. delay

Analytic Evaluation

Best Mapping?

yes

Next
Mapping

no

Optimal Mapping

Figure 1. Proposed application mapping using application profiled in FPGA-emulated MPSoC.

3.1. Application and Platform Model
Task graph of an application can be characterized by a directed graph (DG), G = (T,E),

where T = {t1, t2, ..., tn} is the set of tasks in the application and E = {e1, e2, ..., en} is the set of
directed edges representing dependencies of tasks as shown in Figure 2. Each task, ti contains
an xi denoting the worst-case execution time for the task and is assumed to remain fixed during
the execution. Each edge, ek includes vij which represents the communication volume between
tasks ti and tj .

As designing the entire NoC-based MPSoC platform is out of scope of this work, the
employed platform is generated using ProNoC tool [22]. The overview of the NoC-based MPSoC
platform used in this work is depicted in Figure 3. Figure 3a illustrates the architecture for each
core (tile) in the MPSoC platform. Distributed memory architecture is implemented, where each
core consists of a processor, a local memory, and a network interface (NI). Mapped tasks in each
core are stored and executed from the local memory, while cores inter-communicate with other
cores via network interfaces. All cores are homogeneous and connected to each other through
the NoC interconnect fabric.

TELKOMNIKA Vol. 15, No. 3, September 2017 : 1040 ∼ 1047

TELKOMNIKA ISSN: 1693-6930 � 1043

t0

t1 t2

t3 t4

t5

e1e0

e2
e3

e4

e5 e6

Figure 2. Example of an application model containing 6 tasks.

Processor

Memory
Network
Interface

Interconnect

Core 0

.....

Processor

Memory
Network
Interface

Core k

(a) Each core consists of a processor, local memory, and
network interface in MPSoC platform model

Core 0 Core 1 Core 2

Core 3 Core 4 Core 5

Core 6 Core 7 Core 8

R R R

R R R

R R R

(b) 3×3 mesh based NoC intercon-
nect.

Figure 3. MPSoC platform model for profiling, mapping and emulating application in FPGA.

Mapping of an application is the process of assigning its tasks into the available cores on
MPSoC platform. Cooperative (non pre-emptive) multi-tasking is employed in each core, where
one core can execute more than one task. Communicating tasks use message passing interface
(MPI) protocol to send and receive data and control packets. Hence, communication between
tasks that are mapped to the same core also require message copying delay that is considered
as intra-core communication. On the other hand, inter-core communication is defined as the
communication between tasks that are mapped in different cores.

3.2. Application Profiling
Application profiling is the process to extract practical task execution and communication

delays of an application when emulated in FPGA. The aim of performing application profiling
is to measure the effect of task execution and communication on the overall system throughput.
Execution time, xi of each task ti is defined as the time required to complete a task after it receives
complete data (or token) during one execution period. Task execution time of an application can
be easily obtained by capturing the time difference between the starting and ending of a task’s
execution. As the execution time on any homogeneous core is equal regardless of the mapping,
the maximum execution delays of all tasks can be recorded by mapping all tasks into one core.

On the contrary, communication time, cij is divided into two types represented by a two-
tuple < ca, ce >, with ca and ce denote the intra-core and inter-core delays, respectively. As
application as specified in a task graph contains only communication volume in each connecting
task, profiling each connecting core has to be done to measure the practical communication time.
In order to profile each intra-core communication delay, the two connecting tasks are isolated and
executed in the same core. The intra-core communication delay is measured as the throughput
difference between executing both tasks independently without communication and with com-
munication. On the contrary, both tasks are mapped in neighbouring cores to profile inter-core
communication delay. After profiling, the application graph is re-constructed with profiled spec-
ification as illustrated in Figure 4. Although the actual delays of the applications may differ for
different mappings (maybe due to the multi-task overhead or communication infrastructure de-

Application Profiling and Mapping on NoC-based MPSoC ... (Jia Wei Tang)

1044 � ISSN: 1693-6930

lay such as contention), the profiled costs can be used as the basis to estimate the application
run-time behaviour.

x0

x1

c01=<ca, ce>01

t0

t1

e01
profiling

Figure 4. Application graph re-construction after profiling execution and communication time on
emulated FPGA.

3.3. Mapping Design Space Exploration
After application profiling, analytical-based mapping utilizes the profiled costs to optimize

the application throughput. Execution traces of each mapping is analysed to find the estimation
of application run-time behaviour. Each mapping is evaluated using analytical expression to cal-
culate the throughput using the profiled costs. Mapping exploration process is iterative until the
best mapping is obtained.

3.3.1. Execution Traces Analysis

Execution traces of a mapped applications are analysed to obtain the application through-
put. Task parallelism and temporal parallelism are considered in the execution traces analysis.
The former is the ability to allow parallel execution of different tasks while the latter allows parallel
execution of different temporal data in different cores at the same time.

For instance, Figure 5 depicts the execution traces of an application having 6 tasks, as
shown in Figure 2, mapped onto a 4-core system. All 4 cores are communicating with each
other while executing their assigned tasks in parallel as soon as their data are available. Task
parallelism occurs for task t1 and t2, taking x1 and x2 delays to be executed in core 1 and core
2, respectively. Data parallelism is demonstrated through the execution of different temporal data
(e.g data 1 and data 2) at different time instances. As core 4 requires the longest time to compute
one result, the period (inverse of throughput) is determined by the combination of execution delay
and communication delay.

Core 1:

Core 2:

Core 3:

Core 4:

x0 c01 x1c02

x2c02

c13

c23

c13 c23

c24

x3 c35

c24 x4 c35 x5

x0 c01 x1c02

x2c02

c13

c23

c13 c23

c24

x3 c35

c24 x4 c35 x5

x0 c01 x1c02

x2c02

c13

c23

c13 c23

c24

x3 c35

c24 x4 c35 e5

exec. delay for task i

data 1 data 2 data 3

xi comm. delay for task i to task jcij

time

period periodperiod

Figure 5. Execution traces of a 6-tasks applications running on 4 cores system.

Application throughput is reciprocal of one period (i.e, the average time needed to com-
plete one iteration of the application). Each core utilizes the time period to execute its assigned
task as well as to communicate with other cores. Since the tasks in each application can be ex-
ecuted in pipeline and task-parallel in different cores, the overall throughput is determined by the
slowest core (i.e, the core that requires the longest time to complete executions and communica-
tions of all its mapped tasks).

TELKOMNIKA Vol. 15, No. 3, September 2017 : 1040 ∼ 1047

TELKOMNIKA ISSN: 1693-6930 � 1045

3.3.2. Analytical Evaluation

Given a graph representation of an application with Nt tasks, mapping exploration in
this work is the process of assigning all tasks into available Nc cores to maximize the system
throughput. Based on the execution trace analysis, throughput of a mapped application is the
reciprocal of period. The period is defined as the maximum total required time (among all cores)
for execution and communication, and can be mathematically formulated in Equation 1. The total
required time in each core is calculated by the summation of the profiled execution delays of all
individual assigned tasks as well as all the profiled intra-core and inter-core communication delays
associated to it.

1

throughput
= period

= max
1≤k≤NC

(Xk + Ck)

= max
1≤k≤NC

(

NT∑
i=0

xi.mtik +

NT∑
i=0

NT∑
j=0

caij .maijk +

NT∑
i=0

NT∑
j=0

ceij .meijk) (1)

where i and j are task identifiers while k is the core identifier. Xk denotes the total execution
delays of mapped tasks in core k, which is the summation of the profiled execution delay xi if task
ti is mapped to core k (mtik = 1). Ck denotes the total communication delays associated to core
k, which is the summation of all profiled intra-core communication delay caij if intra-core commu-
nication of task ti and tj exist in core k (maijk = 1), and all profiled inter-core communication
delay ceij if inter-core communication of task ti and tj is associated to core k (meijk = 1).

4. Results and Discussion
The proposed analytical-based mapping is demonstrated by employing the exhaustive

brute force method to map several random application graphs and find the mapping that produces
the best application throughput. The best mapping obtained by the proposed analytical-based
exhaustive (AE) are compared with emulation-based exhaustive (EE) solutions (i.e., ground truth)
which is obtained by executing all mappings on a FPGA emulation system.

Figure 6a shows the throughput for all possible mapping for the proposed analytical-
based application mapping and emulation-based mapping. The proposed analytical-based map-
ping produces results with similar trend with the ground truth solution. Figure 6b depicts the
comparison between emulation-based throughput and analytical-based solution. The proposed
analytical-based mapping throughput is almost similar with emulation-based throughput as the
points scatter nearby the straight line of gradient one.

Table 1 illustrates the comparison between proposed analytical-based and emulation-
based exhaustive (ground truth) for application of different random graphs. The best throughput
(BT) is obtained by emulating the best mapping produced by both methods on FPGA. The eval-
uation time (ET) is the time taken to perform the exhaustive evaluation on all possible mappings
while profiling time is the time taken to profile the tasks based on the proposed method. Results
illustrate that the evaluation time for both exhaustive mapping increases exponentially with the
number of possible mappings. The proposed analytical-based method is able to evaluates all
mappings in much shorter time despite requiring extra profiling time. However, the profiling time
does not increase with number of mappings as it corresponds to the number of profiles required,
that is the total number of tasks and edges in application graphs.

5. Conclusion
Efficient mapping algorithm produces high quality solution in fast evaluation time. This

paper presents a application mapping methodology that utilizes FPGA emulation as an evaluation
platform to optimize the application throughput. Applications are analysed and profiled in the

Application Profiling and Mapping on NoC-based MPSoC ... (Jia Wei Tang)

1046 � ISSN: 1693-6930

0 50 100 150 200 250 300
100000

200000

300000

400000

500000

mappings (sorted with EE)

1/
th

ro
ug

hp
ut

 (
cy

cl
es

)

AE
EE

(a) Throughput of all possible mapping for the proposed
analytical-based exhaustive (AE) and emulation-based ex-
haustive (EE) mapping (sorted based on EE).

100000 200000 300000 400000 500000
150000

200000

250000

300000

350000

400000

450000

500000

EE 1/throughput (cycles)

A
E

 1
/th

ro
ug

hp
ut

 (
cy

cl
es

)

(b) Emulation-based versus analytical-based exhaustive
throughput.

Figure 6. Throughput comparison between emulation-based exhaustive (EE) and proposed
analytical-based exhaustive (AE) mapping in design space exploration of a 7-task application.

Table 1. Comparison in throughput and evaluation time between proposed analytical-based (AE)
and emulation-based exhaustive (EE) for application of different random graphs

Applications
No. of EE Proposed AE

Tasks BT ET BT PT ET

random1(r7) 5 87 607.61 s 87 252.21 s 0.03 s

random2(r8) 6 401 2912.33 s 401 296.10 s 0.15 s

random4(r2) 7 106 15745.43 s 106 309.34 s 0.96 s

random5(r4) 7 875 16143.52 s 875 276.82 s 0.91 s

BT: Best Throughput ET: Evaluation Time PT: Profiling Time

emulated environment to obtain their practical implemented costs in term of execution, intra-core
communication and inter-core communication delays. Application mapping utilizes the profiled
costs find optimal mapping through execution trace analysis and analytical evaluation. Results
show that the proposed analytical-based exhaustive based on the profiling can produce similar
best throughput compared to the ground truth solutions but in shorter evaluation time.

Acknowledgement
This work is supported in part by the Collaborative Research in Engineering, Science &

Technology (CREST) grant P17C114 (UTM vote no. 4B176) and Universiti Teknologi Malaysia
Matching grant (UTM vote no. 00M75).

References
[1] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote, “Outstanding research

problems in noc design: system, microarchitecture, and circuit perspectives,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 1, pp. 3–21,
2009.

[2] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-core systems:
survey of current and emerging trends,” in Proceedings of the 50th Annual Design Automation
Conference. ACM, 2013, p. 1.

[3] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping strategies for network-
on-chip design,” Journal of Systems Architecture, vol. 59, no. 1, pp. 60–76, 2013.

[4] R. Piscitelli and A. D. Pimentel, “Design space pruning through hybrid analysis in system-
level design space exploration,” in Design, Automation & Test in Europe Conference & Exhi-

TELKOMNIKA Vol. 15, No. 3, September 2017 : 1040 ∼ 1047

TELKOMNIKA ISSN: 1693-6930 � 1047

bition (DATE), 2012. IEEE, 2012, pp. 781–786.
[5] J. Hu and R. Marculescu, “Energy-and performance-aware mapping for regular noc archi-

tectures,” IEEE Transactions on computer-aided design of integrated circuits and systems,
vol. 24, no. 4, pp. 551–562, 2005.

[6] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-programming-based techniques for
synthesis of network-on-chip architectures,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 14, no. 4, pp. 407–420, 2006.

[7] S. Tosun, “Cluster-based application mapping method for network-on-chip,” Advances in En-
gineering Software, vol. 42, no. 10, pp. 868–874, 2011.

[8] P. K. Sahu, T. Shah, K. Manna, and S. Chattopadhyay, “Application mapping onto mesh-
based network-on-chip using discrete particle swarm optimization,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 300–312, 2014.

[9] Y. Z. Tei, Y. W. Hau, N. Shaikh-Husin, and M. N. Marsono, “Network partitioning domain
knowledge multiobjective application mapping for large-scale network-on-chip,” Applied Com-
putational Intelligence and Soft Computing, vol. 2014, p. 9, 2014.

[10] E. L. de Souza Carvalho, N. L. V. Calazans, and F. G. Moraes, “Dynamic task mapping for
mpsocs,” IEEE Design & Test of Computers, vol. 27, no. 5, pp. 26–35, 2010.

[11] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-aware heuristics for
run-time task mapping on noc-based mpsoc platforms,” Journal of Systems Architecture,
vol. 56, no. 7, pp. 242–255, 2010.

[12] M. Fattah, A.-M. Rahmani, T. C. Xu, A. Kanduri, P. Liljeberg, J. Plosila, and H. Tenhunen,
“Mixed-criticality run-time task mapping for noc-based many-core systems,” in 2014 22nd
Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP). IEEE, 2014, pp. 458–465.

[13] T. D. Ngo, K. J. Martin, and J.-P. Diguet, “Move based algorithm for runtime mapping of
dataflow actors on heterogeneous mpsocs,” Journal of Signal Processing Systems, pp. 1–
18, 2015.

[14] S. Stuijk, M. Geilen, and T. Basten, “A predictable multiprocessor design flow for streaming
applications with dynamic behaviour,” in 2010 13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools (DSD). IEEE, 2010, pp. 548–555.

[15] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele, “Scenario-based design
flow for mapping streaming applications onto on-chip many-core systems,” in Proceedings of
the 2012 international conference on Compilers, architectures and synthesis for embedded
systems. ACM, 2012, pp. 71–80.

[16] C. Lee, S. Kim, and S. Ha, “Efficient run-time resource management of a manycore accel-
erator for stream-based applications,” in 2013 IEEE 11th symposium on Embedded systems
for real-time multimedia (ESTIMedia). IEEE, 2013, pp. 51–60.

[17] W. Quan and A. D. Pimentel, “A scenario-based run-time task mapping algorithm for mpsocs,”
in Proceedings of the 50th Annual Design Automation Conference. ACM, 2013, p. 131.

[18] A. K. Singh, A. Kumar, and T. Srikanthan, “Accelerating throughput-aware runtime mapping
for heterogeneous mpsocs,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 18, no. 1, p. 9, 2013.

[19] W. Quan and A. D. Pimentel, “A hybrid task mapping algorithm for heterogeneous mpsocs,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 14, no. 1, p. 14, 2015.

[20] A. Goens and J. Castrillon, “Analysis of process traces for mapping dynamic kpn applications
to mpsocs,” in IFIP International Embedded Systems Symposium (IESS), 2015.

[21] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Resource and throughput aware ex-
ecution trace analysis for efficient run-time mapping on mpsocs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 1, pp. 72–85, 2016.

[22] ProNoC. (2016) Prototype NoC based MPSoC. Opencore. [Online]. Available:
http://opencores.org/project,an-fpga-implementation -of-low-latency- noc-based-mpsoc

Application Profiling and Mapping on NoC-based MPSoC ... (Jia Wei Tang)

