
TELKOMNIKA, Vol.16, No.3, June 2018, pp. 1276~1288
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013

DOI: 10.12928/TELKOMNIKA.v16i3.7032  1276

Received August 18, 2017; Revised March 26, 2018; Accepted April 28, 2018

Self-adaptive Software Modeling Based on Contextual

Requirements

Aradea*, Iping Supriana, Kridanto Surendro

School of Electrical Engineering and Informatics, Bandung Institute of Technology
Jl. Ganesha No 10, Bandung 40132, Indonesia

*Corresponding author, e-mail: aradea@unsil.ac.id, iping@informatika.org, endro@informatika.org

Abstract
 The ability of self-adaptive software in responding to change is determined by contextual

requirements, i.e. a requirement in capturing relevant context-atributes and modeling behavior for system

adaptation. However, in most cases, modeling for self-adaptive software is does not take into consider the
requirements evolution based on contextual requirements. This paper introduces an approach through
requirements modeling languages directed to adaptation patterns to support requirements evolution. The

model is prepared through contextual requirements approach that is integrated into MAPE-K (monitor,
anayze, plan, execute - knowledge) patterns in goal-oriented requirements engineering. As an evaluation,
the adaptation process is modeled for cleaner robot. The experimental results show that the requirements
modeling process has been able to direct software into self-adaptive capability and meet the requirements
evolution.

Keywords: self-adaptive software, requirements modeling, contextual requirements, goal -oriented
requirements engineering, rule based systems

Copyright © 2018 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

The involvement of various elements of the real world that interact with software raises
the needs of adaptive systems. Modeling for self-adaptive software is the answer to the
problems and challenges. This activity determines the success or failure of a software system

that can understand and act based on what is happening within its contextual requirements. In
the area of self-adaptive systems, research on requirements engineering is much needed [1-3].
In fact, requirements engineering is an ongoing process because requirements are subjec t to

change and must be managed throughout the system life cycle [4] . This is related to
requirements evolution handling. Recent papers show a lack of research on requirements
evolution for self-adaptive systems [5]. Further, approaches to linking requirements at design-

time with runtime changing contextual requirements still require further investigation [1],[6-7].
Currently, techniques for executing requirements that depend on the relevant context are under-
represented [8].

In this paper, we propose an approach where the system captures the real world
conditions through a goal-based approach as the requirements description, and then
transformed into software components through a control strategy as self-adaptive concept to

establish adaptation behavior at run-time. Requirements modeling language adopted is i*/
Tropos model. The language is chosen because it has an intentional states perspective and a
lightweight language [9]. So, it can represent a real-world context and is easy to use. However,

this model still requires adjustment if it is used for requirements of self-adaptive software. The
problems identified are related to the definition of the inheritance concept [10]. The current
concept does not capture and represent the effect of contextual variabil ity [11], which is the

main characteristic of self-adaptive software. In addition i* model is still not able to describe the
sequence of processes performed by agent. Meanwhile, in self-adaptive software, it is
necessary to determine the adaptation patterns.

In this paper, we introduce (a) requirements modeling language that has embodied
adaptation patterns through the extension of goal-oriented requirements engineering approach
with MAPE-K control loops and context inheritance hierarchies, (b) control models for managing

TELKOMNIKA ISSN: 1693-6930 

Self-Adaptive Software Modeling Based on Contextual Requirements (Aradea)

1277

adaptation mechanisms which are realized through rule editor model, so that the addition or

change of specification can be done by updating the knowledge base directly .

2. Proposed Method
The propose model, as shown in Figure 1, consists of (a) goal model-the representation

of domain model that provides basic functions and contextual requirements, and (b) inference

engine-which is the representation of a control model that manages the target system through
adaptation patterns.

Figure 1. Model of self-adaptive software systems

The adopted goal approach is i*/ Tropos model [12-13], which is an agent-oriented
modeling framework. In this approach, the agent can be viewed as part of a program used to
represent social actors, individuals or organizations that have attributes and behaviors [14].

Further discussion can be seen in our previous paper [15]. Recently, the model has been
expanded. So, it has the self-adaptation ability [16]. The proposed approach provides the ability
to analyze variability at run-time, but here we complement it by mapping the self-adaptive

software patterns and contextual requirements. In addition to defining the contextual
requirements, the system is also directed to having the ability to monitor the variables of each
decomposition of goal and plan entities attached to them. The system architecture can be seen

in Figure 2.

Figure 2. System architecture

  ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 3, June 2018: 1276-1288

1278

On the domain model, goal (functional) is decomposed (AND / OR) into sub-goals. So,

it can be identified by requirements (R-1, R-2, R-n) from each goal that affect on certain
parameters, and have positive or negative contribution (++ / + or - / -) to one or more softgoal
(non-functional). In the control model, the properties (P-1, P-2, P-n) of each of these goals are

identified and transformed into software components, as well as observations on the possible
changes. Further analysis was done through control strategies; the variation of adaptation was
determined based on the determination rule defined as plan (Plan Sets-1, Plan Sets-2, Plan

Sets-n).

2.1. Domain model

In order to realize the system architecture shown in Figure 2, we expanded our previous
work [17-18] by defining the mapping of goal models based on [19] into design
patterns [2],[20-21] inspired by monitor-anayze-plan-execute-knowledge (MAPE-K) models [22]

as shown in Figure 3. Currently, MAPE-K patterns have been acknowledged as the main
characteristic of self-adaptation capabilities. So, we direct the requirements modeling language
containing the pattern. A strategic rationale model consists of a number of nodes (goals,

softgoals, resources, tasks, actors) and links (dependence links, decomposition links, means -
ends links, contribution links) to describe the internal interactions of actors . These actors can
relate to other actors, known as strategic dependency models. Each task decomposition links in

i*/ Tropos represents a particular way in the system (Plan sets) as a sequential process .
However, it is less able to describe the sequence of execution, especially for an
AND-decomposed. This situation will be confusing if each goal/ task has a priority to implement

adaptation patterns, such as monitor-anayze-plan-execute process in sequence. To solve this
problem we use approach [10] so that task decomposition can be changed to clarify the
sequence of processes.

Figure 3. Mapping goal models into MAPE-K patterns

In addition, contextual variability handling as a key feature of self-adaptive software is
still not covered in i*/ Tropos. Thus, we add this capability through contextual requirements (cr),
ie requirements that apply in certain contexts [8],[23]. The concept is adapted from

approach [11], in which related context is organized into context inheritance hierarchies, so that
adaptation pattern (MAPE-K) embedded in the goal model becomes bound and can be adjusted
when it should be active or deactivate. Figure 4 shows inheritance hierarchies context in goal

model, where each goal/ sub goal can have contextual requirements (cr). If a parent's goal has
cr, then it will be inherited to each child's goal, and child's goal can have another cr as shown in
Figure 4a. If a parent's goal has more than one choice of cr, then cr also applies to each child's

goal combined with cr of child's goal, as shown in Figure 4b. This principle is based on context-
based visibility, ie a goal/ sub goal can only be achieved when a particular context (cr) is active
(monitorable context) so that the model will be visible/ active and can be seen as a propositional

DNF formula. In addition to monitorable context, this concept is also applied to domain changes
(non-monitorable context) such as view points, versions, etc., in our version to meet
requirements evolution. Rules for organizing it are accommodated through rule editor models

discussed in section 2.2.

TELKOMNIKA ISSN: 1693-6930 

Self-Adaptive Software Modeling Based on Contextual Requirements (Aradea)

1279

Figure 4. Context inheritance hierarchies in goal models

2.2. Control Model

The main objective of this strategy is to determine adaptation response options that are

most relevant. The notation used to construct this algorithm consists of: (a) a goal model which
consists of nodes (N) connected by attributes property (link) it owns, where each node consists
of a number of state (Sn); (b) a set of state (Sn) which may consist of an initial status and target

status influenced by several fact processings of contextual requiremets (∑ : crn) on the left hand
side (LHS) which will determine the behavior of the action (Q : an) on the right hand side (RHS)
through the transition function (δ : tn); (c) a set of contextual requirements (CR) within a parent

node which can inherit its properties to each child node that binds the visibility of a series of
nodes (N) to active; (d) recognition process conducted by observing ∑ : crn as trigger of Sn for
each N, so as to determine the state as a reference for preparation of plans to realize a number

of Q: an.
Determining requirements that apply in a context (as CR) basically deals with

requirements evolution, ie changes in requirements, whether it adds new requirements or

remove requirements that do not apply in certain contexts. So, the action behavior (Q: an) is
defined as a set of states (Sn) which will determine the set of nodes (N) when to "activate" and /
or "deactivate" based on the bonding rules of context inheritance hierarchies (CR) which are

mapped into component operations [24] as shown in Table 1. In addition, we set a rule that
represents each goal element in the component system. This rule utilizes the component
mapping rules and goal decomposition rules [19]. If the goal decomposition is AND-

decomposition, then the parent goal will need multiple relation (port) attribute for each child goal
with one-to-one relationship. Meanwhile, if the goal decomposition is OR-decomposition, then
parent goal will provide conditional relation (port) attribute to each child goal with one-to-many

relationship. In this activity, setting the properties for each nodes (N) is also needed.

Table 1. Configuration Algorithm
Configuration of Component

N  (nodes)
C  (components)
for all N in goalModel do
 N  C : configuration components for operation

 for each (∑, Q) ≠ ø do
(activate, deactivate)  N
activate  create component instance C from N = CR
deactivate  delete component instance C from N = CR

 end for
 goalModel m  reconfiguration(activate, deactivate)
 enactModel(m)
end for

Control strategy utilizes some of the design patterns [2],[20-21] and modifies it in

accordance with the contextual requirements which have been developed previously. Started

with the function of the component M (monitor), this component will monitor the number of goal
properties that represent system states at run-time. These activities are conducted in response
to the request or event either as time-triggered or event-triggered. State system is a

  ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 3, June 2018: 1276-1288

1280

combination of property values of internal and external goals (N and CR), and the deviation is

detected based on the threshold. Analyze manager performs an analysis based on symptom
list, where this symptoms list contains a set of symptoms that (CR: cr1, cr2 ... crn) have been set
for the system or for storing new symptoms that will appear. If the analyze manager detects the

presence of symptom, then the plan will receive adaptation requests, and reconfigure as
adaptation response.

Reconfiguration algorithm represents the components of AP (analyze and plan), as

shown in Table 2. The AP components contain a rule engine that has the event-condition-action
(ECA) rules. The rule engine in our version is expanded with rule editor model, where the
modification of the rule, for example update or change of the rule, can be made directly to

knowledge base. Adaptation request is represented as a system state (S) which is detected
based on the event that occurs, either based on the existing context inheritance hierarchies
(CR) or new CR. A set δ can be expressed as δ {tn (crn, an) | n ≠ ø}, where crn is a fact of CR,

and an is the expected action behavior (activate or deactivate) for a particular contextual
requirements n (crn). The strategy used is forward strategy, which is to reuse existing
fundamental component and match the required specifications. Then, change plan is executed

by component E (execute) to perform adaptation actions. This component uses a number of
actuators to bring the system back to the expected state.

Table 2. Reconfiguration Algorithm

Reconfiguration of Plan

S.system  (init, target)
δ.selector  (work, found, backs)
 for each S.system in analyzerManager do

 analyzer  update(logs) actual S.system
 search(S.system) in symptomList
 if symptom ≠ ø then
 create(adaptationRequest(CR for N)) and

 update(adaptationRequest(CR for N)) for plan specification
 else
 addSymptom to symptomList and
 create(adaptationRequest) and

 send information(adaptationRequest) for plan specification
 end if
end for

for each adaptationRequest(S.system) do
 init  set work N(∑ , Q)
 while δ {tn (crn , an) | n ≠ ø} do
 δ  find that the LHS of the operator match with work say it found

 if found is only one then
 RHS  set work(N cri)
 else if work is equivqlent(activate(N:cri)) with target(cri ai) then
 stop succed

 end if
 if found is more then one then
 found  set work one(N (cri ˅ crj)) of the found

 backs  put rest (deactivate((N: cr i ˅ crj) aij)) of found
 end if
 if found is empty then
 else if backs is empty then

 stop failed
 else
 backs  set work one(activate(N:crij)) of backs
 end if

 end if
end for

3. Results and Discussion
3.1. Case study: cleaner robot

Case motivation takes an example of the problems description that has been discussed

by previous researchers [16] and [19] with regard to the cleaner robot scenario. Goal modelling
for this case is shown in Figure 5; system requirements can be illustrated as follows: There are

TELKOMNIKA ISSN: 1693-6930 

Self-Adaptive Software Modeling Based on Contextual Requirements (Aradea)

1281

a number of goal properties on context elements that must be monitored. They are (a) the

environment property (external/ symptom): CR = cr1: presence of waste, cr2: critical battery
power, cr3: waste type, cr4: preference; and (b) goal property (internal/ goal hierarchy): on
Figure 5, functional system is represented as a goal and non-functional as softgoal. Possible

goal changes that can occur include: (a) goal of robot behavior which is influenced by the
condition of battery power and waste objects; and (b) goal of cleaning affected by the waste
type encountered.

3.2. Experiment

In Figure 5, manage waste goals must be achieved when cr1 is valid and cr1 is inherited

to each sub goals so that it binds all of its components to MAPE-K patterns, and some of its sub
goals have another cr, ie cr3 and cr4 so that It is achieved when (cr1 ˄ cr3) and (cr1 ˄ cr4).
Manage battery goals must be achieved when cr2 is valid and achievement of one sub goal

when cr4 is valid so that (cr2 ˄ cr4).
Meanwhile, the setting of behavior goals will be achieved when cr1 or cr2 is valid and cr4

is applicable to one subgoal. So, its achievement is when CR=(cr1 ˄ cr4) ˅ (cr2 ˄ cr4). This

condition will become a determining factor when the pattern of some MAPE-K should be
activated and/or deactivated. There are a number of object properties as shown in Table 3.
The waste object is an object that should be cleaned by the robot by observing the battery

power condition and how to clean it. The plug object is the object for battery charging of robot
with properties that can be seen in Table 4.

Figure 5. Goal modelling for cleaner robot

Table 3. Object Properties
Object Type Robot Action Processing Time (s) Travel Time (s)

Contain w ater Rub 2 Time to reach the target
Solid Take 1 Time to reach the target

Contain dust Suction 0,5 Time to reach the target
Plug Battery charging 60 Time to reach the target

Table 4. Battery Properties
Battery Capacity

(mAh)
Motor Load

(A)
Speed

(s)
Travel Time

(s)
Distance

(s)

1000 1 2 60 120

  ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 3, June 2018: 1276-1288

1282

There are a number of waste objects which should be cleaned so that the robot has a

consideration to analyze and plan (AP) "manage waste (cr1)" or "manage battery (cr2)", through
the components of monitor (M) which are "detect waste" and "detect power". Based on the
combination of every property value in Tables 3 and 4, the data collection obtained data by

detecting the travel time based on the results of monitoring the presence of an object in an area
(shown in Table 5). Data on Table 5 will be the input variables for robot to AP "setting of
behavior (cr1 ˅ cr2)", including "observing conditions" components which will determine the

power requirements (f(x)) of each waste object with provisions:

)) (
)

)

So, we obtained the data as shown in power requirements column on Table 5. Then, the sorting

of power requirements from the smallest (as the fitness value) was done. The waste object
sequence by the smallest power requirement can be obtained with provisions:

 (()))

The setting of robot behavior is associated with some rules that can be set and adjusted

to the needs of threshold based on preference (cr4). For example, cr2 is raised when the

detected power < 20% so that the robot charging the battery = activate(N: cr2 ˄ cr4) or if power >
20% robot will actively clean up waste = activate(N: cr1 ˄ cr4). Meanwhile, waste type (cr3) is
raised when waste that should be cleaned is detected so that the robot chooses how to clean.

Based on those rules, the system will perform optimum value observation = activate (N: cr1 ˄
cr4) ˅ (N: cr2 ˄ cr4) by considering cr2 and cr3. Robot behavior in responding to waste type (cr3)
is arranged through rules to choose how to clean up the waste in accordance with the waste

type encountered or create (instances components) how to clean if the waste encountered is a
new type of waste.

Table 5. Data Collection of Waste Object

Object Type Processing Time (s)
= p

Travel Time (s)
= d

Battery Duration (s)
= e

Pow er Requirements
(%)

Puddle 2 5 60 12%

Leaf 1 7 60 13%
Dust 0,5 18 60 31%
Leaf 1 7 60 13%
Leaf 1 12 60 22%

Leaf 1 15 60 27%
Dust 0,5 7 60 13%
Leaf 1 16 60 28%
Dust 0,5 4 60 8%

Leaf 3 8 60 18%
Leaf 1 4 60 8%

Puddle 2 8 60 17%

Based on modeling in Figure 5, goal decomposition of "clean up waste" is OR-
decomposition which shows the presence of variability associated with the selection of cleaning
instructions, whether suction, rubbing, taking, assuming waste_type (cr3) identified contains

dust, water, and solid objects. In addition, this event will also be affected by unexpected events
or errors (event_error), for example the action failure because of overload (cr5) on the robot,
emergence of obstacles (cr6), sensor damage (crn), etc. The problem that can emerge here is

that when determining the choice and when waste type encountered by the robot is a new type,
the robot must reconfigure the system to provide an alternative behavior. Based on the
description, it can obtain the variable of "waste_type" and "event_error" so that the plan can be

represented as: plan(waste_type, event_error).
The objective of this plan is to create an alternative behavior to cope with contextual

(CR) variability to meet high-level goal and softgoal. For example, the plan of "cleaning method"

must use the executes (E) component function "robot decision" based on the components of

TELKOMNIKA ISSN: 1693-6930 

Self-Adaptive Software Modeling Based on Contextual Requirements (Aradea)

1283

"setting of behavior (AP)". It can give full positive contribution (++) to "accuracy", "optimization of

time", and "resilience" softgoal, compared to simply analyzing and planning to "manage waste
(AP)" which only contributes positively (+). It will be affected by negative contribution (-) when
the plan is executed. Thus, the system has a consideration to analyze and plan (AP) to

"manage waste" and "manage battery" based on the determination of property values of each
parameter. The value of this property becomes input variables of robot to "setting of behavior
(AP)". Setting behavior is associated with some rules that can be defined as follows:

Rule-1 : if (waste_type = contain_dust) and (event_error = null) then plan = service_suction

Rule-2 : if (waste_type = contain_water) and (event_error = null) then plan = service_rubbing

Rule-3 : if (waste_type = solid) and (event_error = null) then plan = service_taking

Rule-4 : if (waste_type = new_type) and (event_error = not null) then plan = create new service_action

Rule-5 : if ((waste_type = null) and (event_error = not null) then plan = create new service_action

Rule-6 : if (event_error = not null) then plan = change service_action

Rule-7 : if not [criteria] then plan = change service_action

Table 6. ECA-Cleaning Method

Event (E) Condition (C) Action (A)

 (cr3) (waste_type = contain_dust);
(waste_type = contain_water);
(trush_type = solid);

(event_error = null);

P1.1 = service_suction
P1.2 = service_rubbing
P1.3 = service_taking

 (cr5 ˅ cr6) (waste_type = new_type);
(waste_type = null);
(event_error = not null);

P2 = create new
service_action
[instance component]

(cr5 ˅ cr6) (event_error = not null);
not [criteria];

P3 = change service_action
[instance component]

Furthermore, the rule is mapped into the concept of ECA as shown in Table 6. "Event"
refers to the current state of the robot; "condition" refers to the time when condition changes;
“action” refers to under certain circumstances what can be done to adapt, in order to obtain

three action of change plans (Pn) as an alternative solution for the adaptation. Based on the
indicators of optimum value and the rule set forth in Table 6, the robot can adjust its behavior
through the component "robot decision (E)" to execute the adaptation action to clean waste

through option "rub (E)", "take (E) "," suction (E) ", or other actions considering the action
"battery charge (E)". The illustration of the execution order of the robot system functions can be
seen in Figure 6.

Figure 6. The illustration of the execution order of the cleaner robot system

  ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 3, June 2018: 1276-1288

1284

A=P1.1, P1.2, P1.3 in Table 6 is an adaptation action for monitorable context, while P2 and

P3 show the dynamic evolutionary needs of CR, ie non-monitorable context for handling domain
changes, such as view points, versions, etc. In this case, it adds new components to the
software based on new CR that appears, ie cr5=overload and cr6=obstacle. This represents the

fulfillment of requirements evolution in which the addition of components can be implemented at
run-time. For example, the rules for cr5 and cr6 are as follows: (a) cr5 is generated when the
capacity is detected >80%, and capacity=0%. So, it is necessary to adjust the robot movement

path to the position of bin; (b) cr6 rearrange the robot movement path when obstacle objects
suddenly appear. Adaptation actions for requirements evolution based on cr5 and cr6 can be
composed as new MAPE-K composite components. Another example of the create new

service_action in Table 6 is a new function to dispose waste in "clean up waste" which is
influenced by cr5. This can be added as a primitive component on “manage waste” MAPE -K
composite component. The dashed line in Figure 7 shows that the new component is added to

the existing component specification.

Figure 7. The components specification after the addition of new components

In this experiment, we also measure the scalability process represented by the number

and type of waste objects that can continue to grow at run-time, as well as the average size of

their execution time. As an experiment, we add a number of new waste objects gradually and
randomly up to 50 objects as can be seen in Figure 8. The evaluation results show a linear
scale between execution time and object size. It can be concluded that the system is capable of

handling change and growth of contextual requirements together based on the number per
second linearly. As a future work, we plan to expand the control strategy for knowledge domain
related to the improvement of execution time.

TELKOMNIKA ISSN: 1693-6930 

Self-Adaptive Software Modeling Based on Contextual Requirements (Aradea)

1285

Figure 8. Process scalability of cleaner robot system

4. Discussion: Comparison with Related Work
The approach proposed in this paper is influenced by previous works. The comparison

can be seen in Table 7. The researchers adopt and extend various approaches in realizing self-

adaptation capabilities. For example, Morandini [16] uses the requirements that are similar to
those of our proposed approach of extending i*/ Tropos. Morandini introduces design-time
requirements such as goal types, environmental models and failure models, including

operational semantics for dependencies and run-time reasoning. However, we add domain
assumptions concept created explicitly through contextual requirements which will improve the
process of analyzing domain variability.

Table 7. Comparison with Related Work
Model Requirements

Specif ications

Design-time Run-time Requirements

Evolution
Tropos4AS

Morandini [16]

Goal, softgoal, plan,

resources, relation,
environment class

Designing variability:

goal type, condition,
and failure model

Transition rules:

elicitation and recovery
for failure

No

Adaptive STS

Dalpiaz [25]

Goal, softgoal, plan,

resources, domain
assumptions, context

Designing contexts:

activations rules, time
limits, plan, goals

DLV- reasoner:

reconcile and
compensation for failure

No

ARML
Qureshi [26]

Goal, task, quality
constraints, domain

assumptions, context

Designing ontology:
goals, relation,

preferences, rules

Inference rules: high-
level goal (user)

reasoning

No

GASD
Wang [27]

Goal/ role model,
resource, plan/
restriction, activity

Designing ontology:
UML, goal tree,
know ledge library

Inference engine: goals
selection for failure and
alternative behavior

No

SOTA
Abeyw ickrama

[28]

Goal: pre & post-
condition, utilities:
actor, entity

Designing utilities,
grammar -language,
goal to event-based

Model checker labeled
transition system
analyzer for verif ication

No

REFAS

Fernandez [29]

Goal, softgoal,

context, assets,
claim, dependency

Designing concern

level & operation,
goal, soft dependency

Generic meta-model:

verif ication & simulation
for adaptation model

No

GODA
Mendonça [30]

Goal, softgoal, plan,
resources, contextual

goal model

Designing contextual
& runtime goal, model

transformation

Probabilistic model
checking for verif ication

solution

No

GOCC
Nakagaw a [19]

Goal/ requirement,
entity/ object, agent,

operation

Designing three-layer
architecture for goal &

S/W components

Parser engine for new
patterns and conflicts,

model generation

Yes

ZANSHIN
Souza [32]

Goal, task, quality
constraints, domain
assumptions

Designing aw arness
requirements,
parameters model

Adaptation framew ork:
qualitative adaptation,
evolution requirements

Yes

Our Model Goal, softgoal, plan,
resources, domain
assumptions, context

Designing contextual
requirements, MAPE-
K pattern, goal, rules

Inference engine:
variability & evolution
rules for contexts

Yes

  ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 3, June 2018: 1276-1288

1286

Currently, contextual requirements concept has been used by some researchers,

including Dalpiaz [25] linking contexts to variation point in goal model as an architectural model
with self-reconfiguration capability for multi-agent behavior. However, requirements evolution is
still not covered, similar to Morandini [16]. In this model, requirements are assumed to be

unchanged over time. Qureshi [26] also equips i*/ Tropos through contextual requirements
concept by mapping goal model into domain ontology using Techne language, but reasoning
mechanism for changing domain assumptions, preferences and contexts related to

requirements evolution still requires further research. In addition, Wang [27] also applied
ontology concept (OWL Ontology) to goal tree in BDI agent. In fact, the reasoning mechanism
can be improved. We propose a more flexible rule model so that run-time reasoning can be

done automatically. Abeywickrama [28] proposed a goal pattern with a natural language
approach; Fernandez [29] proposed a requirements model for self-adaptive systems to address
uncertainty through the multi-view framework specification. However, their work did not include

requirements evolution.
Mendonça [30] proposes contextual runtime goal models through probabilistic model

checking that focuses on providing requirements specification and verification at design-time

and run-time. However, they have not addressed the full perspective of self-adaptive software
related to mapping into software components. From another perspective, Ying [31] introduced a
formalization method for analyzing and concluding evolution for self-adaptive software

structures through software components, but this approach st ill does not include contextual
information, such as environmental descriptions as contextual requirements that trigger
evolution. In this paper, we try to employ both perspectives, that is implementing contextual

requirements and mapping software components. A similar work was done by Nakagawa [19]
which has inspired us, but the focus and approach used are different. Our work may be
complementary to enrich the feature, for example in terms of component specifications relat ed

to domain variability rules and dynamic evolution mechanisms that can be performed
automatically based on detected contextual requirements.

In Table 7, Souza [32] also proposes models related to requirements evolution through

awarness requirements. Our model works on different perspectives. A context-based adaptation
strategy can support context awareness when associated with awarness requirements. In
addition, entities of problem domains in domain models have not proposed specific ways to

represent it, while we take advantage of goal oriented-requirements engineering through context
inheritance integrated into MAPE-K pattern to represent domain variability and have
consideration to manage its changes at software architecture levels.

5. Conclusion

The proposed model in this paper highlights the importance of addressing changes and
growth in contextual requirements. We introduce requirements modeling language that has
been redirected to adaptation patterns through context inheritance hierarchies to bind and

manage the activation of MAPE-K model. Adaptation control is manifested through rule editor
model with rule based systems approach that can be updated at run-time. The adaptation
scenarios are prepared for two issues: first, related to variability rules to deal with changes in

context information (domain variability); second, related to evolutionary rules for requirements
evolution. Based on the experimental results, the model is able to handle both issues which are
shown through case study descriptions. This model still requires further research to improve the

aspect of dealing with the refinement of transformation concept between goal model into
software component, which enriches the supporting features for broader context inference. In
addition, conflict resolution among system components also requires further research to

accommodate more complex conflicts. In the near future, we plan to investigate uncertainty
issues related to requirements evolution to enrich the model proposed in this paper.

Acknowledgments

The work conducted for this study was supported by Ministry of Research, Technology

and Higher Education of the Republic of Indonesia (No. 181.A/ADD/UN58.21/LT/2017).

TELKOMNIKA ISSN: 1693-6930 

Self-Adaptive Software Modeling Based on Contextual Requirements (Aradea)

1287

References
[1] Cheng B.H.C, Rogério de Lemos R, Giese H, Inverardi P, Magee J. Software Engineering for Self-

Adaptive Systems: A Research Roadmap. LNCS 5525-Springer. 2009; 5525: 1–26.
[2] Rogério de Lemos R, et. al. Software Engineering for Self-Adaptive Systems : A Second Research

Roadmap. Self-Adaptive Systems. LNCS 7475-Springer. 2013; 7475: 1–32.
[3] Weyns D, Usman Iftikhar M, Malek S, Andersson J. Claims and Supporting Evidence for Self-

Adaptive Systems: A Literature Study. Proceedings of Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). 2012; 89–98.

[4] Besrour S, Ghani I. Measuring Security in Requirements Engineering. International Journal of
Informatics and Communication Technology (IJ-ICT). 2012; 1(2): 72-81.

[5] Sucipto S, Wahono R.S. A Systematic Literature Review of Requirements Engineering for Self-
Adaptive Systems. Journal of Software Engineering. 2015; 1(1):17–27.

[6] Bencomo N. Requirements for Self-Adaptation. Generative and transformational techniques in
software engineering IV. LNCS 7680-Springer Berlin. 2013; 7680: 271–296.

[7] Abeywickrama D.B, Ovaska E. A Survey of Autonomic Computing Methods in Digital Service
Ecosystems. Service Oriented Computing and Applications. 2017; 11(1): 1-31.

[8] Knauss A, Damian D, Franch X, Rook A, Müller H.A, Thomo A. ACon: A Learning-Based Approach to
Deal With Uncertainty in Contextual Requirements at Runtime. Information and Software Technology.
Elsevier B.V. 2016; 70(2016): 85-99.

[9] Jureta I. The Design of Requirements Modelling Languages. How to Make Formalisms for Problem
Solving in Requirements Engineering. Edition Number 1. XII 286. Springer. 2015.

[10] Surendro K, Martini C. Hierarchical i* Modeling in Requirement Engineering. TELKOMNIKA
(Telecommunication, Computing, Electronics and Control). 2016; 14(2): 784-790.

[11] Lapouchnian A, Mylopoulos J. Capturing Contextual Variab ility in i* Models, CEUR Proceedings of
the 5th International i* Workshop (iStar 2011). 2011; 96–101.

[12] Yu E, Giorgini P, Maiden N, Mylopoulos J. Social Modeling for Requirements Engineering.
Cambridge Massachusetts -London: The MIT Press. 2011.

[13] Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J. Tropos: An agent-oriented software
development methodology. Journal of Autonomous Agents and Multi-Agent Systems. 2004; 8(3):
203–236.

[14] Mulyani H, Djatna T, Sitanggang I.S. Agent Based Modeling on Dynamic Spreading Dengue Fever
Epidemic. TELKOMNIKA (Telecommunication, Computing, Electronics and Control). 2017; 15(3):
1380-1388.

[15] Aradea, Supriana I, Surendro K. An Overview of Multi Agent System Approach in Knowledge
Management Model. International Conference on Information Technology Systems and Innovation
(ICITSI). Bandung - Indonesia. 2014; 62-69.

[16] Morandini M, Penserini L, Perini A, Marchetto A. Engineering Requirements for Adaptive Systems.
Requirements Engineering. Springer London. 2017; 22(1): 77–103.

[17] Aradea, Supriana I, Surendro K, Darmawan I. Variety of Approaches In Self-Adaptation
Requirements: A Case Study. Recent Advances on Soft Computing and Data Mining, Advances in
Intelligent Systems and Computing. Springer. 2017; 549: 253-262.

[18] Aradea, Supriana I, Surendro K, Darmawan I. Integration of Self-Adaptation Approach on
Requirements Modeling. Recent Advances on Soft Computing and Data Mining. Advances in
Intelligent Systems and Computing. Springer. 2017; 549: 233-243.

[19] Nakagawa H, Ohsuga A, Honiden S. Towards Dynamic Evolution of Self-Adaptive Systems Based on
Dynamic Updating of Control Loops. International Conference on Self-Adaptive and Self-Organizing
Systems. Lyon, France. IEEE 2012; 59-68.

[20] Abuseta Y, Swesi K. Design Patterns for Self Adaptive Systems Engineering. International Journal of
Software Engineering & Applications (IJSEA). 2015; 6(4): 11-28.

[21] Weyns D. et al. On Patterns for Decentralized Control in Self-Adaptive Systems. In R. de Lemos, H.
Giese, H. A. Muller, and M. Shaw, editors . Software Engineering for Self-Adaptive Systems. LNCS-
Springer. 2012; 7475: 76–107.

[22] Kephart J.O, Chess D.M. The Vision of Autonomic Computing. IEEE Computer. 2003; 36(1): 41–50.
[23] Inverardi P, Mori M. Requirements Models at Run-time to Support Consistent System Evolutions.

International Workshop on Requirements@Run.Time. 2011; 1–8. IEEE.
[24] Hirsch D, Kramer J, Magee J, Uchitel S. Modes for software architectures. European Workshop on

Software Architecture. LNCS. 2006; 4344: 113–126.
[25] Dalpiaz F, Giorgini P, Mylopoulos J. Adaptive socio-technical systems: a requirements -based

approach. Requirements Engineering. Springer. 2013; 18(1):1–24.
[26] Qureshi N.A, Jureta I.J, Perini A. Towards a Requirements Modeling Language for Self-Adaptive

Systems. LNCS in Springer. REFSQ. 2012; 7195: 263-279.
[27] Wang T, Li B, Zhao L, Zhang X. A Goal-Driven Self-Adaptive Software System Design Framework

Based on Agent. Physics Procedia. ICAPIE. 2012; 24: 2010-2016. Elsevier B.V.

mailto:Requirements@Run.Time

  ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 3, June 2018: 1276-1288

1288

[28] Abeywickrama D.B, Zambonelli F. Model Checking Goal-Oriented Requirements for Self-Adaptive
Systems. 19th IEEE International Conference and Workshops on Engineering of Computer-Based
Systems. 2012; 33-42.

[29] Munoz-Fernandez J.C. Towards a Requirements Specication Multi-View Framework for Self-
Adaptive Systems. CLEI Electronic Journal. 2015; 18(2): 5.

[30] Mendonça D.F, Rodrigues G.N, Alves V, Ali R, Baresi L. GODA: A Goal-Oriented Requirements
Engineering Framework for Runtime Dependability Analysis. Information and Software Technology.
Elsevier B.V. 2016; 80(2016): 245-264.

[31] Ying W, Howard M. Software Running Dynamic Reconfiguration Model Based on B Diagram.
TELKOMNIKA (Telecommunication, Computing, Electronics and Control) . 2016; 14(2A): 101-107.

[32] Souza V.E.S, Lapouchnian A, Angelopoulos K, Mylopoulos J. Requirements-Driven Software
Evolution. Computer Science - Research and Development. Springer. 2013; 28(4):311-329.

