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Abstract 
 Training speech recognizer with under-resourced language data still proves difficult. Indonesian 

language is considered under-resourced because the lack of a standard speech corpus, text corpus, and 
dictionary. In this research, the efficacy of augmenting limited Indonesian speech training data with highly -

resourced-language training data, such as English, to train Indonesian speech recogniz er was analyzed. 
The training was performed in form of shared-hidden-layer deep-neural-network (SHL-DNN) training. An 
SHL-DNN has language-independent hidden layers and can be pre-trained and trained using multilingual 
training data without any difference with a monolingual deep neural network. The SHL-DNN using 
Indonesian and English speech training data proved effective for decreasing word error rate (WER) in 
decoding Indonesian dictated-speech by achieving 3.82% absolute decrease compared to a monolingua l 
Indonesian hidden Markov model using Gaussian mixture model emission (GMM-HMM). The case was 
confirmed when the SHL-DNN was also employed to decode Indonesian spontaneous-speech by 
achieving 4.19% absolute WER decrease. 

  
Keywords: deep neural network, grapheme-to-phoneme, indonesian, shared hidden layer, under-
resourced 
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1. Introduction 
Automatic Speech Recognition (ASR) training for under-resourced languages still 

proves to be a big challenge in speech recognition community [1-2]. Speech-recognition training 

is generally benefited from large training data because it heavily relies on the statistical 
distribution of speech features presented in them. Given limited training data, the speech 
parameter estimation involved in acoustic modeling may be compromised [3]. On the other 

hand, annotating large training data is difficult and time-consuming. As a result, many 
researches still struggle to find an effective method to train an ASR in such condition.  

Indonesian language or Bahasa Indonesia is one of many under-resourced languages 

in terms of speech training. Despite having massive number of speakers, it still lacks a standard 
speech corpus, text corpus, and dictionary [4-5]. Therefore many researches have to develop 
their own corpus and/or dictionary. 

Incorporating other language(s) to enrich the training data for recognizing the under-
resourced language becomes an option. One method to achieve this is using a hidden Markov 
model with Gaussian mixture model emissions (GMM-HMM) based system in form of subspace 

Gaussian mixture model (SGMM). In [6], the system is trained with small Afrikaans training data 
incorporated with large Dutch data to recognize Afrikaans speech. Reference [7] also uses 
SGMM-based recognizer trained with German, Spanish, and limited English data to recognize 

English words. In both researches, there is improvement in recognition accuracy for the target 
language (Afrikaans and English respectively). However, it has been analyzed that Afrikaans is 
closely related to Dutch [8] and English belongs to the same language group as German and 

Spanish, i.e. Indo-European Group [9].  
For Indonesian, there is no research that employed SGMM as the speech model. One 

research [10] incorporates English into Indonesian training data for the speech recognizer in a 

conventional GMM-HMM system. However, the recognition accuracy for Indonesian is 
degraded. Indonesian, the under-resourced language, is less related to English than Afrikaans 
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to Dutch or English to German and Spanish. In regard to this result, there is still no research 

that analyzes the impact of SGMM for distantly related languages. 
Meanwhile, many researches now analyze deep neural network (DNN) which has been 

state-of-the-art for speech recognition and can outperform GMM-HMM system(s) in most  

cases [11]. The DNN for speech recognition has more than one hidden layer and exactly one 
output layer. The DNN can utilize training data from many languages easily, as the hidden 
layers can be perceived as language-independent and only the output layer is language-

dependent [3]. Moreover, DNN should be trained with large amount of data to reduce  
over-fitting [12]. Thus, a DNN can be effectively employed for recognizing under-resourced 
language by training it with the target language (the under-resourced language) training data 

incorporated with one or more highly-resourced language(s). 
More researches also show that using the multilingual training for a DNN can benefit the 

under-resourced target language even if the non-target language(s) is/are distantly related with the 

target language. This is the case with a DNN trained with French, German, Spanish, and Italian 
training data. The hidden layers from the DNN are then transferred to an output layer to recognize 
Mandarin Chinese, a language that is distantly related to the four European languages. The DNN is 

called Shared-Hidden-Layer DNN (SHL-DNN). The SHL-DNN is then shown to outperform the 
monolingual DNN trained with only Mandarin Chinese by almost 10% absolute error reduction [13]. 
The case is also reconfirmed when an SHL-DNN is trained with English and limited amount of 

Indonesian data to recognize Indonesian speech. The SHL-DNN outperforms both DNN and GMM-
HMM recognizer trained with only Indonesian data by almost 4% and 2% absolute error reduction 
respectively [14]. 

Another case to be researched is recognizing spontaneous speech. Spontaneous 
speech is different from dictated speech. Acoustically, the whole phoneme spectrums in 
spontaneous speech are more convergent while each of the phonemes has spectrums that are 

more diverse [15]. This makes inter-phoneme boundary diffuser. Linguistically, spontaneous 
speech usually contains filled pauses, repetitions, interjections, unknown or mispronounced 
words, omissions of pronouns and/or relatives, and ungrammatical sentences or unusual word 

orders [16]. These make recognizing spontaneous speech more challenging than dictated 
speech. While training a recognizer for an under-resourced language is challenging, training the 
recognizer to recognize spontaneous speech makes it more challenging. This is the case for 

Indonesian language where its spontaneous speech differs significantly from its dictated 
speech. 

In this research, we show that using an SHL-DNN trained with the under-resourced 

Indonesian incorporated with the highly-resourced English training data can improve the 
Indonesian recognition accuracy. We also show that using the same SHL-DNN can improve the 
recognition accuracy for Indonesian spontaneous speech. Both cases are compared to a GMM-

HMM system trained with only the under-resourced Indonesian data. We choose an SHL-DNN 
over an SGMM system due to the fact that DNN is the current state-of-the-art speech-recognition 
method. 

 
 

2. Shared-hidden-layer Deep Neural Network (SHL-DNN) 
2.1. Deep-neural-network hidden-markov-model (DNN-HMM) 

Deep Neural Network (DNN), which is the state-of-the-art speech-recognition model, 
comprises many layers of hidden units and one output layer [11]. The hidden unit typically 

employs a sigmoid function, e.g. logistic function or sometimes hyperbolic tangent function. Each 
hidden unit j has an activation function, e.g. logistic function yj which map its total input xj into a 
scalar state and is defined as 
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The total input xj for hidden layer j in layer i maps the output of each hidden units in the layer 

below (i - 1) into a value and is defined as 
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where b j is a bias value for unit j and wij is a weight assigned to each connection from a hidden 
unit in layer (i-1) to unit j. For speech recognition, which is a multiclass classification, each 
hidden unit in the output layer k  maps its total input to a class probability using “softmax” 

function, which is defined as 
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Architecture of a fully-connected DNN is illustrated in Figure 1. 
 
 

 
 

Figure 1. Architecture of a fully-connected DNN 
 
 

A DNN can be discriminatively trained via back-propagation and gradient descent that 
measure discrepancies between the target outputs and the actual DNN outputs [17]. However, 
infinite variations of number of hidden layers and number of units in each hidden layer cause 

massive number of parameters to be predicted. Thus, it is difficult to optimize the model 
parameters [11]. A DNN with many hidden layers is a flexible model that is suitable to model 
complex data such as speech. However, it is difficult to find the best set of weights using the 

gradient descent algorithm that is initialized using a random point near the origin, unless the 
initial starting point is carefully chosen [18]. The weight initialization values will affect the back-
propagated errors that will also affect each set of weights in each different layer. 

One solution to this problem is to first generatively pre-train the DNN. Instead of 
randomly initializing the DNN‟s many hidden layers, a Deep Believe Network (DBN) can be 
constructed [19]. Each pair of adjacent layers in a DBN is constructed as a restricted Boltzmann 

machine (RBM). An RBM has one “visible” input layer and one “hidden” layer where each unit in 
the input layer is connected to each unit in the hidden layer but no unit has any connection to 
each other in the same layer [20]. By using an RBM, the first layer in a DBN is a visible input 

layer that transforms its input to an output that is fed to the second (hidden) layer. After the pair 
is constructed (trained), outputs of the second layer will act as inputs to a to-be-constructed third 
(hidden) layer. The training proceeds until the desired number of layers is achieved. By using 

the method, instead of assuming the DBN is good at discriminating classes, it is assumed to be 
good at modeling structure of the training data [11]. After the DBN is constructed, it can be 
employed as a good starting point to the gradient descent algorithm where back-propagated 

errors can slightly adjust its weights so that every unit is fine-tuned through a DNN training [21]. 
A DNN for speech recognition is interfaced with an HMM to become a hybrid DNN-

HMM acoustic model. To compute the Viterbi alignment in an HMM system, scaled probabilit ies 

(likelihoods), )|( HXp , are required. They define probability of emitting feature X given an HMM 
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state H. However, a DNN gives posterior probabilitas, )|( XHp , which is probability of an HMM 

state H given a feature X. To convert the posterior probability into the scaled likelihood, consider 

the naïve Bayes rule,  
 

     
 Hp

XpXHp
HXp

|
|  . (4) 

 

Probability of an HMM state, p(H), can be obtained from frequencies of the state in the aligned 
training data used to fine-tune the DNN. The probability of a feature, p(X), is an unknown factor 
that has little effect on the alignment, so it can be ignored. While the conversion works in some 

recognition tasks where the data are balanced, it should be used with caution when the data are 
highly imbalanced (e.g. have many frames of silence) [11]. 

It should be noted that a DNN-HMM acoustic model can be trained with more-correlated 

features, unlike a GMM-HMM model that should be trained with highly decorrelated (independent) 
features. In a GMM-HMM model, if the features are strongly correlated, the HMM requires to 
utilize full covariance GMMs or larger number of diagonal GMMs and they make the computation 

more expensive. Hence, mel-frequency cepstral coefficients (MFCCs) [22], which are highly 
decorrelated between their individual feature components, are more suitable for GMM-HMM 
modeling [11]. On the other hand, a DNN training does not require highly decorrelated features, 

so we can use mel filterbanks [22], which are highly correlated between their individual feature 
components. In fact, a DBN-DNN trained with mel filterbanks achieves 1.7% lower absolute phone 
error rate than the best one trained with MFCCs [11],[23]. 

 
2.2. Shared-Hidden-Layer Deep-Neural-Network (SHL-DNN) 

Shared-hidden-layer deep-neural-network (SHL-DNN) is a DNN trained with more than 

one language [13]. The input and hidden layers are shared across the languages while its 
output (softmax) layer is language-specific. Architecture of an SHL-DNN is illustrated  
in Figure 2. 

 
 

 
 

Figure 2. Architecture of an SHL-DNN 
 
 

The input and shared hidden layers must be trained (or pre-trained) simultaneously with 
all decodable languages [13]. Fortunately, they can be pre-trained with the unsupervised DBN 
pre-training [19] since it does not require a language-specific output layer, so the pre-training 

can be performed rather easily [13]. It should also be noted that for each language to uniformly 
update the weight of all hidden units, the multilingual pre-training data must be shuffled 
uniformly across the languages. 
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After they have been pre-trained, they are fine-tuned with the usual back-propagation 

algorithm through a DNN training. However, the method to train an SHL-DNN must be slightly 
updated. An ordinary DNN has one softmax layer for one language, so discrepancies between 
its actual and its target outputs update all of its hidden and softmax units. In an SHL-DNN, each 

language has its own softmax layer, so discrepancies between its actual and its target outputs 
for a language update its hidden units and only the softmax units for the respective language. 

An SHL-DNN trained with many languages can outperform a DNN trained with only one 

target language when recognizing the language. It is also shown that the shared hidden layers 
can be transferred to construct another DNN to recognize a target language that is distantly 
related with languages used to train the SHL-DNN. This is the case when an SHL-DNN trained 

with French, German, Spanish, and Italian to recognize Mandarin Chinese outperforms a 
monolingual DNN trained only in Mandarin by almost 10% absolute character error  
reduction [13]. This trait can benefit the under-resourced language, such as Indonesian, by 

training the SHL-DNN jointly with other highly-resourced language(s), such as English. 
 
 

3. Indonesian Language 
Indonesian language (Bahasa Indonesia) is a language officially used in Republic of 

Indonesia and spoken by almost 198 million people (2010) either as a first or as a second 

language [24]. It belongs to Austronesian group and is a variant of Malay language [25]. The 
language is used as a lingua franca in the archipelagic republic the people of which comprise 
hundreds of ethnicities and speak hundreds regional languages. Unlike Mandarin Chinese, it is 

not a tonal language. It is an SVO (Subject-Verb-Object) language. While the formal language 
usually follows the rule rigidly, the informal one does not. In the informal language, the important 
rule is the object always follows the verb. The change of the word order usually indicates the 

change of focus or emphasis. It is written in the 26-letter Latin alphabet. Each letter derives its 
name from its Dutch counterpart since Indonesia used to be a Dutch colony. The complete list 
of the name of each letter can be viewed in [26]. In Indonesian, almost every grapheme 

corresponds to one phoneme [27]. Table 3 lists all phonemes that occur in Indonesian and gives 
the mapping between each phoneme and its own grapheme based on [25]. The phoneme 
symbols used are the IPA (International Phonetic Alphabet).  

When plosive /k/ occurs at the end of a native syllable, it will be realized as either /k/ or 
/ʔ/ depending on the speaker‟s ethnicity. It does not happen when the word is a loan word, e.g. 
the ‹k› in fak ta is always pronounced /k/. Phonemes /f/, /z/, /x/, and /ʃ/ only occur in loan words 

especially from Arabic. Phoneme /v/ is almost always realized as either /f/ or /p/, hence there is 
no /v/ in the table. The glottal stop /ʔ/ can occur in four cases  [25]. First, it is an allophone of /k/ 
as explained before. Second, it occurs between two vowels in some Arabic loan words such as 

maaf /maʔaf/. Third, it occurs between a vowel-final prefix and a vowel-initial root word such as 
keamanan /kəʔamanan/. Fourth, it occurs between a root word that ends in an /a/ and a suffix 
that starts with an /a/ such as pertigaan /pərtigaʔan/. The diphthongs only occur in an open 

position in a syllable, i.e. when the syllable does not end in a consonant  phoneme. 
Many Indonesian words can be formed with affixation, hence it  belongs to agglutinative 

language family [28]. For example, the word hasil (result) can form words berhasil „succeed‟, 

keberhasilan „success‟, ketidakberhasilan „failure‟, menghasilkan „produce‟, penghasil 
„producer‟, and penghasilan „income‟. Because of the affixation, a long word can be formed such 
as kumempertanggungjawabkannya „I am responsible for it‟ although it is rare. There is no 

declension, conjugation, and tense for all words. Plural nouns are expressed by word 
reduplication. Indonesian also heavily borrows words form other languages, especially English 
and Arabic. Many English words are borrowed because of science and technology, while many 

Arabic loan words are because the majority of Indonesian people practice Islam. 
 
 

4. The Training and Evaluation Data 
4.1. Speech training and evaluation data description 

There are three speech corpora used in this research. The first is an Indonesian dictated-

speech corpus from [5] which was also reused in [14]. The second is the English WSJ SI284 
corpus. The third is an Indonesian spontaneous-speech corpus from [29]. Every corpus was 
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recorded in an acoustically clean environment into files that are monaural, formatted in WAV, and 

encoded using Microsoft PCM. They also have sampling rate of 16 kHz and bit rate of 256 kbps.  
The Indonesian dictated-speech corpus comprises recordings from 20 native 

Indonesians, 11 are male and 9 are female. Every person reads not more than 343 prepared 

sentences. Every person‟s recording is then segmented into sentences and there are some 
people that have fewer than 343 due to some deleted recording segments (sentences) because 
they either get repeated or contain too much noise. 

The corpus is then divided into training, development, and evaluation set. The training 
set will be used in training the baseline GMM-HMM and the SHL-DNN system and is named ID-
Train. It comprises 10 people (6 males and 4 females) chosen randomly and speak not more 

than the first 270 of the 343 sentences for a total of approximately 5.5 hours. The development 
set, named ID-Dev, will be used for early-stopping the DNN training. It comprises the same 10 
people speaking not more than the next 30 sentences of the 343 sentences. The training set 

together with the development set (ID-Train-Dev) will also be employed to pre-train a DBN 
before fine-tuning it through DNN training. The evaluation set (ID-Read) will be used as the 
standard evaluation for each dictated evaluation scenario in the research. It comprises the other 

10 people (5 males and 5 females) that speak not more than the last 43 of the 343 sentences 
for a total of 4,926 words. More details about the separation are given in Table 1 and Table 2. 

The WSJ SI284 corpus comprises 283 people (142 males and 141 females) speaking a 

total of 37,416 sentences. The sentences were taken from articles of the English Wall Street 
Journal. This corpus will be used exclusively as a pre-training and training set for the SHL-DNN 
jointly with the ID-Train. 

The Indonesian spontaneous-speech corpus comprises 299 people, 146 are male and 
153 are female. They speak a total of 18,806 sentences (270,478 words). Unlike the Indonesian 
dictated-speech data, its sentences were not prepared. In a clean recording environment, each 

person was asked about different topics and his/her response was recorded. The response was 
recorded per person and then manually segmented into sentences. Because there was no 
prepared transcript, each segment had to be manually annotated. Due to the nature of 

spontaneous speech, every segment could contain noises and fillers, such as breathing and 
hissing sound. The noises and fillers were annotated with tags in the transcript. This corpus will be 
used exclusively as the standard evaluation set for each spontaneous evaluation scenario in this 

research and is named ID-Spontan. Statistic of each corpus is summarized in Table 1 and  
Table 2. 
 

 
Table 1. Detailed Information about Speech Training and Development Sets  

Corpus #Speakers #Sentences 

ID-Train 
10 

31,548 

ID-Dev 3,340 
WSJ SI284 283 37,416 

 
 

Table 2. Detailed Information about Speech Evaluation Sets 
Corpus #Speakers #Sentences #Words 

ID-Read 10 425 4,926 
ID-Spontan 299 18,806 270,478 

 
 

4.2. The phoneme set and the dictionary 
The phoneme set and their representation are listed in Table 3. As seen in the table, the 

symbols are fewer than their own phoneme counterpart. The glottal stop /ʔ/ that is the allophone of 

/k/ is represented by symbol “k”, while in other cases, the glottal stop is not represented by any 
symbol. Each diphthong is translated into its own vowel and approximant constituent based on its 
representation in [25]. For example diphthong /aj/ can be seen as phoneme /a/ + /j/ by its 

representation, hence it is represented as a double-symbol “a y” (notice the space between the 

two symbols). Both phoneme /e/ and /ə/ are represented with only one symbol “e”. This is because 
both are written with one grapheme ‹e› and there is no clear rule on whether the grapheme ‹e› is 
pronounced as an /e/ or /ə/. Indonesians are sometimes confused about the rule themselves. For 
example, the word macet „jammed‟ should be pronounced as /macət/ but many Indonesians 
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pronounce it as /macet/. Some ethnicities, such as Batak people, are also having difficulty in 

pronouncing the /ə/. Therefore, both phonemes are represented with only one symbol “e”. 
As seen in Table 3, there is a high degree of regularity between the graphemes and 

their own symbol(s). Based on the fact, a tool is built to help developing a speech dictionary by 
extracting all words that appear in the Indonesian dictated-speech corpus (the 343 prepared 

sentences) and translating all graphemes to their own correspondent phoneme(s) (grapheme-
to-phoneme tool). The rules are as follows: 

a. Each diphthong digraph is translated based on its own constituent letter to simplify the 

rule. This rule is introduced because each diphthong‟s appearance in a word cannot be 
predicted. This is not the case with other consonant digraphs. For example, the digraph 

‹ng› is always pronounced as /ŋ/, hence it is always represented as “ng” (notice the lack 
of space). Therefore, for example, when grapheme ‹a› occurs, the next grapheme does 

not have to be investigated, but when ‹n› occurs, the next grapheme must be 

investigated to determine whether the translation is “n”, “ng”, or “ny”. 
b. The glottal stop, except for the allophone of /k/, is not translated to any symbol.  

c. Except for the diphthongs and the glottal stop, all graphemes are translated to their own 
symbol based on Table 3. 

 

 
Table 3. List of Mapping between Indonesian Phonemes, Graphemes, and their own HMM 

Training Symbol 
Phonetic Category Phoneme Usual Grapheme Symbol Example 

Vow el 

/a/ ‹a› a ada 
/e/ 

‹e› e 
enak 

/ə/ emas 
/i/ ‹i› i isi 
/o/ ‹o› o obat 

/u/ ‹u› u urus 

Diphthong 
/aj/ ‹ai› a y abai 
/aw / ‹au› a w engkau 
/oj/ ‹oi› o y amboi 

Plosive 

/b/ ‹b› b bibi 
/d/ ‹d› d dada 
/g/ ‹g› g gagap 

/k/ 
‹k›  

k 
kakak 

‹q› Quran 
/p/ ‹p› p paku 
/t/ ‹t› t tata 

/ʔ/ 
‹›  maaf *) 

‹k› k tak 

Affricate 
/tʃ/ ‹c› c cucu 
/dʒ/ ‹j› j jaja 

Nasal 

/m/ ‹m› m masa 

/n/ ‹n› n nama 
/ɲ/ ‹ny› ny nyanyi 
/ŋ/ ‹ng› ng ngeri 

Trill /r/ ‹r› r rasa 

Fricative 

/f/ 
‹f› 

f 
fasih 

‹v› via 
/h/ ‹h› h hari 

/x/ ‹kh› kh akhir 
/s/ ‹s› s saya 
/ʃ/ ‹sy› sy syarat 
/z/ ‹z› z zakat 

Approximant 
/w / ‹w › w waktu 
/j/ ‹y› y yakin 

Lateral Approximant /l/ ‹l› l laut 

Note: *) the phoneme occurs betw een the tw o a‟s in maaf 
 

 
d. One rule that is not included in Table 3 is introduced, i.e. grapheme ‹x› is translated to “k s”. 

Because the rule is simple, many discrepancies between the resulting phoneme 
sequence and the actual pronunciation are introduced to the end result. Therefore, every entry 
in the resulting dictionary is then manually checked against its actual pronunciation. There are 
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some cases where correction needs to be performed to the phoneme sequence, which are  

as follows: 
a. The diphthong case explained before; a grapheme sequence that should be pronounced as 

a diphthong is translated to its own symbol, e.g. ‹ai› that is pronounced as the diphthong /aj/ 

is translated to “a y”. 
b. The resulting phoneme sequence for an abbreviation is corrected to pronunciation of its own 

individual constituent letters, e.g. ‹abg› is translated to “a b e g e” not “a b g”. 
Pronunciation of each letter is based on [26]. 

c. Since grapheme ‹x› comes from foreign words, its pronunciation is not uniform. Not all ‹x› 

are pronounced as “k s”; there are also some ‹x›-es that are pronounced as “s” since it is 
impossible to pronounce the /k/. For example, it is impossible to pronounce the /k/ in xanana 

(a foreign name), so it is pronounced as “s a n a n a” rather than “k s a n a n a”. 
d. The grapheme ‹y› behaves somewhat ambiguously in Indonesian. It can be pronounced as a 

/j/ especially in native words, e.g. in ayah /a y a h/ „father‟. However, it is sometimes 
pronounced as an /i/ especially in foreign names and words, e.g. in tommy /t o m m i/. 
Therefore, it must be investigated on per word basis. 

e. The grapheme ‹h› is sometimes silent. Again, this comes from foreign names and words like 

manchester “m a n c e s t e r”. 

f. The digraph ‹sh› is sometimes pronounced as a “sy” but sometimes as two separate 

phonemes “s h”. Again, the former occurs mainly in foreign names and words.  
g. Other cases where it is impossible to pronounce the phoneme(s). For example solowiejczyk  

is translated to “s o l o w i e z i k” as it is impossible to pronounce the /dʒ/ (‹j›) and /tʃ/ 
(‹c›) phoneme. 

Although in the ID-Train, ID-Dev, and ID-Test, foreign names and words are pronounced 
according to the Indonesian rule of pronunciation (not their original language), there are still 

some words that cannot be pronounced the way Indonesian pronunciation rule stipulates. The 
corrections are made to accommodate such foreign names and words. The resulting dictionary 

has 2,321 words after the addition of “‹unk›” entry for unknown words. The entries are all 

lowercased to simplify the training and decoding process. Symbol SIL is also appended to the 
list of phonemes; it signifies all silences, noises, and unknown words.  

 
4.3. The text corpus and the language model 

The text corpus for building the language model (LM) was also obtained from [5]. It was 
compiled from Kompas newspaper and Tempo magazine online collections. In this research, it 
is named “Tala” after its compiler. After some cleanings (the details can be viewed in [5]), the 

resulting text corpus contains 613,054 sentences. The detailed statistic for the text corpus is 
given in Table 4.  

A 3-gram LM is built using the SRILM Language Modeling Toolkit [30] augmented with 

Kneser-Ney smoothing and interpolation of higher-order with lower-order probability estimates [31]. 
Vocabulary for building the LM comprises all words that appear in the dictionary. The LM is then 
evaluated using the ID-Read and the ID-Spontan transcriptions. For the ID-Read, only the last 43 

sentences are used, not all sentences. The resulting perplexities are shown in Table 5. 
 
 

Table 4. Detailed Statistics about the “Tala” Text Corpus 
Attribute Quantity 

Number of sentences 613,054 
Number of w ords 10,250,637 
Average words per sentences 16.72 
Number of unique w ords 108,224 

 

 
Table 5. Perplexities of Each Text Corpus Evaluation Set 

Evaluation Set Perplexity #OOV/#Unique Words 

ID-Read (43 sent.) 161.74 
0/499 
(0%) 

ID-Spontan 231.84 
116,537/269,631 

(43.22%) 

Note: OOV is out-of-vocabulary w ords, i.e. w ords that do not appear in the vocabulary (dictionary)  
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5. Experiments and Results 

5.1. Feature extraction 
To train an HMM-DNN model, a GMM-HMM model must first be trained. For training the 

GMM-HMM model, 13-dimension MFCC features (the 0
th

-12
th

 cepstral coefficient) are extracted 

from each of the speech training and evaluation sets. The Δ  and ΔΔ features are appended only 
in the monophone and triphone training. 

To train the DNN, 40-dimension mel filterbank features are extracted from each of the 

training, development, and evaluation sets. As mentioned in Section II.A, a DNN can be trained 
with highly-correlated features more efficiently than a GMM-HMM and the resulting recognizer 
yields fewer errors than when it is trained using the MFCCs. To obtain MFCC features, mel 

filterbank features must be extracted first then be decorrelated using the disc rete cosine 
transform (DCT) [32]. Therefore, mel filterbanks are less decorrelated than MFCCs. 

Both feature extraction methods are followed by per-speaker cepstral mean and 

variance normalization (CMVN). CMVN is claimed to make the extracted features more robust 
to environmental noises by normalizing the means and variances of each speaker‟s features to 
zero [33]. All experiment steps including the feature extractions and the model trainings will be 

conducted using the Kaldi toolkit for speech recognition [34]. 
 

5.2. Building the GMM-HMM models 

A DNN requires target values. In a DNN for recognizing speech, its target values are 
posterior probabilities generated by the Viterbi alignment using a GMM-HMM model. Therefore, 
a GMM-HMM is required to train the DNN. In this research, two GMM-HMM models are 

required, one for Indonesian and one for English. Both Indonesian and English GMM-HMM will 
be required for the forced alignment to produce posterior probabilities used as the training target 
for the SHL-DNN later. In addition, the Indonesian one will also be required to produce baseline 

evaluation results to be compared to the results of the SHL-DNN. The Indonesian GMM-HMM 
models will be trained with the ID-Train set while the English models with the WSJ SI284 
corpus. Steps to build the GMM-HMM models as the training target for the DNN are essentially 

similar to Type-I features experiment of [35] with some minor changes. 
The first step is to train two monophone models (one for each language) using the 

obtained MFCC features appended with their own first and second derivatives (MFCC + Δ + ΔΔ). 

Each model is trained with its respective training data. Each resulting model is then employed in 
forced-alignment process required for its respective triphone training. Next, two triphone models 
are trained with the appended MFCC features. Each model is specified to have 2000 leaves and 

10000 mixtures; Kaldi can only specify total number of mixtures and cannot specify number of 
mixtures each leaf has. 

Using force-alignment results by the triphone models, two LDA/MLLT (linear 

discriminant analysis followed by maximum likelihood linear transform) models are trained on 
only the 13-dimension MFCCs (not using the Δ and ΔΔ). Each model is to have 2500 leaves 
and 15000 mixtures. For training each LDA model, each 13-dimension MFCC frame is spliced 

across ± 3 frames resulting in a 91-dimension vector. The LDA [36] is then applied to all spliced 
vectors, decorrelating them and reducing their dimensions to 40. The GMM-HMM states are 
used as the classes for the LDA estimations. The resulting 40-dimension vectors are then used 

to estimate the MLLT [37] (also known as “global semi-tied covariance” transformation [38]) for 
the GMMs. The MLLT transforms the GMMs to model the feature distributions more accurately. 
As described, the LDA/MLLT improve the modeling process from two sides; the LDA improves 

the features and the MLLT improves the models. 
Same as before, the LDA/MLLT models are employed in the forced alignment for 

training the next set of models, i.e. two SAT (speaker adaptive training) models. As with the 

LDA/MLLT models, each SAT model is also to have 2500 leaves and 15000 mixtures. SAT is an 
estimation process where two maximum-likelihood linear regressions (MLLRs) are employed, 
one to the feature space in form of fMLLR (feature-space MLLR) and one to the model space in 

form of CMLLR (constrained MLLR) [39]. The GMMs are transformed by CMLLR using training 
data that have been transformed by fMLLR. The Indonesian SAT model will then be employed 
to decode each evaluation set, the ID-Read and the ID-Spontan. The results will be used as a 

baseline for decoding results of the SHL-DNN. Forced alignment using SAT model for each 
language will then be employed as the training target for the SHL-DNN. The final Indonesian 
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SAT model produces 1,933 senones (context-dependent HMM states), while the English model 

produces 3,367 senones. 
 

5.3. Pre-training the DBN and training the SHL-DNN 

A fully-connected DBN is first pre-trained to become the shared layers in the SHL-DNN. 
As mentioned before, it is not necessary for the DBN to know which language the training data 
belong to. Therefore the DBN can be built efficiently using training data for both languages 

without changing anything. To pre-train it, the Indonesian training data ID-Train are first merged 
with the development data ID-Dev to become ID-Train-Dev. The ID-Train-Dev are then merged 
with the English WSJ SI284 set and shuffled. The shuffling is performed to distribute the 

Indonesian training data uniformly inside the English data, so the pre-training will not skew to 
either language. The resulting set will be used as pre-training data for the DBN. 

The DBN will have 6 hidden layers, each has 2048 hidden units. Each hidden unit has 

logistic activation function the output of which ranges from 0 to 1. The input to the DBN is a 40-
dimension mel filterbank frame spliced across ± 5 frames (11 adjacent frames).  The trained  
DBN is then appended with a block softmax output layer to form the SHL-DNN. The block 

softmax layer contains two layers of softmax units, one layer for Indonesian and one for English. 
The two layers share the same hidden layers, but connections from one softmax layer to the 
hidden layers are independent from another softmax layer. The output layer represents 

posterior probability of each corresponding HMM state. The Indonesian softmax layer contains 
1,933 units corresponding with number of senones outputted by the Indonesian triphone + 
LDA/MLLT + SAT model, while the English layer contains 3,367 units. Architecture of the SHL-

DNN in this experiment is based on Figure 2 with Indonesian as “Language 1” and English as 
“Language 2”. 

The training is performed with only the shuffled Indonesian ID-Train set merged with the 

English WSJ SI284 set without the ID-Dev set. The ID-Dev are utilized for early-stopping the 
DNN training to prevent overfitting. Input to the SHL-DNN is also a 40-dimension mel filterbank 
frame spliced across ± 5 frames (11 adjacent frames).  The whole SHL-DNN is trained using 

cross-entropy (CE) as its cost function and an initial learning rate of 0.008. After some training 
epochs, the learning rate will be halved for each subsequent epoch. The training will stop after 
the cost reduction is less than 0.1% of the previous epoch or maximum number of training 

epochs is reached.  
The training target is the forced alignment generated by the triphone + LDA/MLLT + 

SAT model for each language. This is the reason the triphone + LDA/MLLT + SAT model is also 

required for English. Actual outputs of softmax layer for one language will be compared to the 
corresponding forced-alignments for the language to determine the cost. Discrepanc ies 
between the actual outputs and the forced alignments of one language will update the hidden 

layers of the SHL-DNN and only the sofmax layer for the corresponding language. After the 
training is finished, the English softmax layer is discarded because i t is not required for 
decoding, leaving only the 1,933-unit Indonesian output layer. The SHL-DNN will decode each 

Indonesian evaluation set (ID-Read and ID-Spontan). The result for each set will be compared 
to the decoding result of the corresponding set using the Indonesian triphone + LDA/MLLT + 
SAT model. 

 
5.4. Results 

Results are reported in terms of word error rate (WER). The WER is defined as  

 

%100






 


N

DIS
WER . (5) 

 
where S is number of substituted words in results compared to their referenceIis number of 

inserted words, D is number of deleted words, and N is total number of words in the reference 
sentences. The lower the WER the better. The WER for each evaluation set decoded by the 
GMM-HMM triphone+LDA/MLLT+SAT model and the SHL-DNN is given in Table 6. Based on 

the table, it can be seen that the SHL-DNN always outperforms the GMM-HMM model, even in 
the ID-Spontan decoding where the number of OOV words are high. 
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Table 6. Decoding Results in Terms of WER (%) 
Evaluation Set GMM-HMM SHL-DNN 

ID-Read 7.94 4.12 

ID-Spontan 70.62 66.43 

 
 

6. Analysis and Discussion 

The SHL-DNN outperforms the GMM-HMM on the decoding result for both the dictated 
and spontaneous evaluation set. This confirms the effectiveness of jointly training a DNN for an 
under-resourced target language with another highly-resourced language although the language 

is distantly related with the target language. In the decoding result of the dictated evaluation set 
ID-Read, it is understandable that the WER is low because the dictionary is built using only the 
words that appear in the ID-Train, ID-Dev, and ID-Read. This makes the OOV nil and the word 

searching space not too big. However, what makes the SHL-DNN outperform the GMM-HMM is 
that the SHL-DNN can successfully decode some named entities. Those include foreign-
sounding names (e.g. yevgeny, islamabad), native-sounding names (e.g. joko, tenau), and 

native names with old spelling (e.g. suadmodjo). The GMM-HMM also fails to decode some 
abbreviations, like ntt (abbreviation of East Nusa Tenggara province in Indonesia) and uu 
(abbreviation of Undang-Undang „act/law‟). The GMM-HMM model decodes those words to 

similar word(s), e.g. yevgeny /yefgeni/ is decoded as “di f g ni” /di ef ge ni/. Although there are 
also some words that are unsuccessfully decoded by both models (e.g. jankulovsk i), those 
cases are more pronounced in the decoding result by the GMM-HMM than the SHL-DNN. That 

makes insertion errors and deletion errors higher in the GMM-HMM result than in the  
SHL-DNN one. 

The decoding on spontaneous evaluation set ID-Spontan yields high WER because the 

OOV rate is high (43.22%). This makes OOV words either be decoded as other word(s) or be 
deleted. Because the ID-Spontan are more recent than the ID-Read, the OOV words also 
include words that recently are more frequently spoken, such as jokowi, name of the recently 

elected Indonesian president. In the decoding results by both models, fillers and noises are 
decoded almost unsuccessfully for all sentences. This is because there is no example of filler 
and noise in both English and Indonesian (dictated) training data. Both training sets were 

recorded in an acoustically clean environment. Looking at the resulting sentences, the GMM-
HMM decoding result has more insertion errors than the SHL-DNN result. That is the reason the 
GMM-HMM yields higher WER than the SHL-DNN since number of insertion errors has no 

upper limit. In both decoding scenarios, insertion errors are also directly affected by Indonesian 
grammar. Since Indonesian grammar frequently uses reduplication, the reduplication is decoded 
to two indentical words increasing insertion errors. Some words are also decoded to other 

similar sounding word(s) increasing the substitution and insertion errors. For example, 
pengangguran is decoded to penangguhan (similar sounding word increasing substitution 
errors) and inflasi is decoded to “indra si” (similar sounding two words increasing substitution 

and insertion errors). 
 
 

7. Conclusion 
The results show that augmenting training data for an under-resourced language, such 

as Indonesian, with another highly-resourced language, such as English, and using them to 

train an SHL-DNN decreases the WER. Shuffled training data for both languages can be utilized 
as pre-training data for a DBN efficiently without any difference with a monolingual DBN pre-
training. The resulting DBN can be appended with a softmax layer for each language and be 

trained simultaneously with training data for both languages in form of SHL-DNN. The SHL-DNN 
is then employed to decode Indonesian dictated and spontaneous speech. The SHL-DNN 
decoding on the dictated speech yields 3.82% absolute (48.11% relative) decrease in WER 

compared to the monolingual Indonesian GMM-HMM while the decoding on the spontaneous 
speech yields 4.19% absolute (5.93% relative) decrease. This shows the effectiveness of a 
multilingual SHL-DNN for the under-resourced Indonesian language compared to a monolingual 

GMM-HMM. 
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