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Abstrak 
Pada paper ini, kami menjelaskan upaya dalam menentukan ranking fitur berbasis spektral 

dengan memanfaatkan teknik filter yang digunakan untuk identifikasi instrumen gamelan Jawa. Model 
yang dipakai mengekstraksi sekelompok fitur berbasis spektral dari sinyal suara gamelan dengan 
menggunakan Short Time Fourier Transform (STFT). Ranking dari fitur ditentukan dengan memanfaatkan 
lima algoritma, yaitu ReliefF, Chi-Squared, Information Gain, Gain Ratio, dan Symmetric Uncertainty. 
Selanjutnya kami menguji ranking fitur secara validasi silang dengan menggunakan Support Vector 
Machine (SVM). Eksperimen menunjukkan bahwa algoritma Gain Ratio memberikan hasil terbaik, yaitu 
menghasilkan akurasi sebesar 98.93%.  

  
Kata kunci: support vector machine, transkripsi otomatis, Gain Ratio, ekstraksi fitur 

 
 

Abstract 
 In this paper, we describe an approach of spectral-based features ranking for Javanese gamelan 

instruments identification using filter techniques. The model extracted spectral-based features set of the 
signal using Short Time Fourier Transform (STFT). The rank of the features was determined using the five 
algorithms; namely ReliefF, Chi-Squared, Information Gain, Gain Ratio, and Symmetric Uncertainty. Then, 
we tested the ranked features by cross validation using Support Vector Machine (SVM). The experiment 
showed that Gain Ratio algorithm gave the best result, it yielded accuracy of 98.93%. 

  
Keywords: support vector machine, automatic transcription, Gain Ratio, features extraction 
  
 
1. Introduction 

Feature selection is a process of finding an optimal feature subset, removes irrelevant 
or redundant feature. Feature selection is one of the important steps in machine learning 
especially for recognition tasks. The performance of recognition algorithms are usually 
dependent on the quality of the feature set. If the feature set contains redundant or irrelevant 
features, the algorithm may produce a less accurate or a less recognition rate. The feature 
selection problem has been studied by the statistics and machine learning communities for 
many years [1-4]. The feature selection algorithms can be categorized as filter, wrapper, and 
embedded methods based on the criterion functions. Filter methods uses statistical properties 
for evaluating feature subsets. The advantages of filters methods are fast and efficient to 
process high dimensional datasets, however filters approach do not consider the feature 
dependencies. Wrapper methods use a learning algorithm for evaluating the selected feature 
subsets. Embedded methods are similar to wrapper methods, but less computationally 
expensive and considering feature dependencies [5]. Feature extraction can be viewed as 
finding a subset of raw data while reducing the dimensionality. 

Many algorithms have been developed to perform audio feature extraction; common 
methods such as temporal based and spectral based using Fast Fourier Transform (FFT), Short 
Time Fourier Transform (STFT), Discrete Wavelet Transform (DWT), and Continuous Wavelet 
Transform (CWT). There are various features have been proposed for audio signal, such as 
zero crossing rate, RMS energy, envelope, and spectrum representation [6]. We used a set of 
spectral-based features which has been previously developed for gamelan instruments 
identification [7]. 
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There are several approaches has been developed to estimate the pitch and 
instruments in the automatic music transcription. We can use autocorrelation function [8] for 
identifying hidden periodicities in a time-domain signal. The autocorrelation function shows the 
peaks periodicity in a signal. Suprapto et al [9] [10] introduced a method to generate music 
transcription for gamelan using spectral density model to extract the waveforms of gamelan 
instruments sound using Adaptive Cross Correlation (ACC). 

Another technique is pattern recognition approach that requires a set of features to 
identify the musical instruments [11] [12]. The common features that needed for recognition 
process such as pitch, frequency modulation, spectral envelope, spectral centroid, intensity, 
amplitude envelope, amplitude modulation, onset asynchrony and in harmonicity. 

The goal of this paper is to get the minimal spectral-based features subset that 
extracted from gamelan recording using STFT. The selected features subset then validated by 
cross-validation techniques using support vector machine (SVM). There are two main reasons 
for addressing this tasks using SVM. First, accurate recognition of gamelan instrument is itself 
an important for automatic transcription. Second, because of the effectiveness of SVM [13] [14] 
and recently became one of the most popular recognition or classification methods. SVM have 
been used in a variety of applications such as text classification [15], facial expression 
recognition [16], gene analysis [17], [18] and many others.  

In the proposed approach, Javanese gamelan instruments identification is 
accomplished through identification of individual blades or keys using an SVM classifier. 
Javanese gamelan is an ensemble of percussion instruments that mostly metallophone [19], 
xylophones, and gong type instruments which produce tones when struck with horn or wooden 
mallets. A complete set of gamelan consist of 72 instrument [20], for example: kendang, saron 
groups, bonang groups, kethuk-kenong and gongs. Group of saron consist of demung, saron, 
and peking. Those instruments play the core melody or balungan gendhing. Gamelan is one of 
percussion type musical instruments which do not produce harmonic sounds [21]. However, 
because of the handmade production, gamelan still produce the frequencies of non-integer 
overtone [22]. The frequency range of saron groups [7] can be seen at Table 1. Individual 
gamelan pitch are sometimes difficult to identify due to their overlapping in frequency, for 
example fundamental frequency of saron ‘1’ equals to that of demung ‘1H’.   

The rest of this paper is organized as follows. Section 2 describes the research method 
how to get the optimal spectral-based feature subsets. Section 3 presents our experiments and 
discuss the results. Finally, Section 4 gives conclusions of our experiments. 

 
 

Table 1. Saron group frequency range 

Keys 
 Fundamental Frequency (Hz)  

Demung Saron Peking 
 6L      231       463       925  

  1      267       533      1062  

  2      307       613      1225  

  3      349       698      1400  

  5      402       805      1599  

  6      463       925      1858  

 1H      533      1062      2158  

 2H     613     1225     2477 
 

 
 

Figure 1. Flowchart of the research method 
 
 
2. Research Method 

A general view of the flowchart of the proposed system is depicted in Figure 1. The 
output of the proposed system is the selected feature subset for identifying the gamelan 
instruments. The first stage in our proposed system is preprocessing. Before a gamelan 
recording is subjected to the proposed methods, it is preprocessed in some way in order to 
make the following task easier. 

The preprocessing consists of noise reduction, low-pass filtering, and sampling rate 
conversion. The second step is to create time-frequency representation or spectrogram from a 
gamelan recording. The 2D matrices spectrogram of the given gamelan recording is calculated 
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by the short-time Fourier transform (STFT) using Hamming window with window size 
approximately 2048 samplings  and hopsize 6%. 

Before extracting the features set, segmentation in the time-frequency domain was 
performed. The process of segmentation for the time-frequency representation requires note 
onset information. Note onset can be detected using sudden changes of acoustic energy 
approaches [24]. In the case of strong gamelan note, this abrupt energy changing will be very 
sharp. We can find the onset location using the peak detection function [25]. The features set 
then calculated based on the segmented spectrograms The features set should contain useful 
information for identifying and differentiating gamelan instruments. In this paper, we used 34 
features for gamelan instruments identification tasks. The features [26] have been calculated 
and additional features have been extracted including the statistical properties like mean, 
variance of the spectral envelope.  

We compared the five feature ranking algorithms of the filters approach. They are 
Information Gain, Gain Ratio, Chi-squared, Symmetrical Uncertainty and Relief. Ranking 
algorithms produce a ranked list, according to the evaluation of criterion function. For the sake 
of performance comparison, we also consider the cross validation accuracy. We calculated the 
cross validation accuracy in terms of SVM classifier. 
 
2.1. Time-frequencies Analysis 

The goal of automatic gamelan transcription is to extract the sequence of gamelan 
notes from gamelan recording. Gamelan notes are any system that represents the pitch of a 
gamelan sound. This paper is part of the project aims to develop a system that extracts note 
events from gamelan sounds spectrogram. 

Spectrogram is a spectro-temporal representation of the sound. Spectrogram provides 
a time-frequency portrait of gamelan sounds. The STFT has been the commonly used method 
for generating time-frequency representations or spectrograms of musical signal. The result of 
STFT can be plotted on a 2D or 3D spectrogram (as shown in Figure 2) as a function of time 
and frequency, and magnitude is represented as the height of a 3D surface spectrogram or 
intensity in 2D spectrogram. However, STFT suffers from the common shortcoming that the 
length of the window determines the time and frequency resolution of the spectrograms [27] 
[21].  

The size of the window used for STFT is related to the time resolution and frequency 
resolution. If we apply a short window, we will have good time resolution. However, if we 
implement a long window, we will get high frequency resolution but low time resolution. For pitch 
analysis such as automatic gamelan note transcription, the frequency resolution of the 
spectrograms is more important than the time resolution [21]. Then STFT with long window is 
good enough for automatic gamelan note transcription. 
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 Spectral slope ( Ss ), spectral decrease ( Sd ), spectral variation ( Sv ), spectral 

rolloff or frequency cutoff ( Fc ), and spectral flatness ( So ).  

 Frequency derivative of the constant-Q coefficients ( Si  )  

 Octave Band Signal Intensities (OBSI ) 
    (iv)  Perceptual features  

 Relative specific loudness ( Ld ), sharpness ( Sh ), and spread ( Sp ). 

 
In this paper, we provide 34 spectral features, such as: fundamental frequency, spectral 

centroid ( Sc ), two spectral rolloff ( Fc ), spectral flux ( SF ), spectral skewness ( Sa ), spectral 

kurtosis ( Sk ), spectral slope ( Ss ), and spectral bandwidth ( Sw ). These features are then 
combined as a feature set of a gamelan sound. The feature set is normalized by dividing each 
feature component by a real number  so the result is between  -1 and 1. The normalized feature 
set is considered as the final representation of the gamelan sound. 

Spectral skewness ( Sa ) is a measure of the asymmetry of the spectrum around the 

mean value. If 0<Sa  indicates more energy on the right side. If 0>Sa  indicates more energy 
on the left side. Spectral kurtosis K  is a measure of the peakedness or flatness of the shape of 
power spectrum distribution. Positive kurtosis 3>K  indicates a peaked distribution, the 

standard normal distribution has a kurtosis 0=K , and negative kurtosis 3<K  indicates a 
flatter distribution [30]. Those features (spectral skewness, spectral moment, spectral kurtosis, 
and spectral entropy) were implemented using statistical function. 

Spectral centroid ( Sc ) is a measure of the center of gravity of the spectrum. The 
spectral centroid is computed by multiplying the value of each frequency by its magnitude, then 
the sum of all these divided by the sum of all the magnitudes. The spectral centroid (Sc) [31] 
[29] [32] can be defined as Eq. (1),  
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where  )(ifM  is the magnitude for the frequency f  at bin i , N  is the number of frequency 

bins. 
Scheirer and Slaney defined the spectral rolloff point ( Fc ) as the 95th percentile of the 

power spectrum distribution [33]. Spectral rolloff is the frequency when 95% of the signal energy 
is contained. Spectral rolloff ( Fc ) is defined as Eq. (2), 

 

   )(0.95)(
1=1=

ifMifM
N

i

Fc

i
         (2) 

 
 

2.4. Feature Ranking 
The goals of feature selection are improving computational efficiency but preserving or 

even increasing recognition rate. It becomes important to the success of the tasks that apply 
machine learning approach especially when the data have many irrelevant or redundant 
features. In general, the features selection algorithms can be categorized as wrapper approach 
and filter approach [34] [1]. 

The five filter-based feature ranking techniques being compared are described below. 
Those techniques are Information Gain ( IG ), Gain Ratio (GR ), ReliefF ( RF ), Chi-Squared      

(CS ) and Symmetric Uncertainty ( SU ), and available in the Weka data mining tool [44]: 
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(i) ReliefF (RF) is an extension of the Relief algorithm developed by Kira and Rendell [36]. 
The main idea of Relief algorithm is to evaluate the worth of a feature or attributes based 
on how well their values can be used to distinguish among the instances. Relief algorithm 
cannot handle incomplete data and only limited to two-class problems. The ReliefF is the 
extended version of Relief. ReliefF can handle incomplete data and not limited to two class 
problems. However, if we apply the algorithm for a highly noisy data that have many 
irrelevant features and/or mislabeling, the performance of ReliefF can get worse [37]. 

(ii) Chi-Squared (CS) can be used to evaluate the worth of a feature by calculating the value 
of the Chi-Squared with respect to the class. The null hypothesis is the assumption that the 
two features are unrelated, and it is tested by Chi-Squared formula from Plackett [38]. If we 
got a large value of CS, then we can determine that the feature is an important feature. 

(iii) Information gain (IG) can also be used for determining the feature rank. The main idea of 
IG  is to select features based on entropy. Entropy is a measure of how mixed up or 

uncertainty or the disorder degree of a system. [39] [40]. IG  measures the number of bits 
of information gained about the class prediction when using a given feature to support the 
prediction. Information gain [40] of the feature or attribute A  is defined as Eq. (3), 

 
)|()(=)( ACECEAIG        (3) 

where )(CE  is the entropy of classes C  and )|( ACE  is the conditional entropy 

of C  given A  when the value of the attribute A  is known.  

(iv)  The Gain Ratio (GR) is an extended version of Information Gain. GR  is more efficient and 
effective than Information Gain and can be used to evaluate the correlation of attributes 
with respect to the class concept of an incomplete data set in  [41] [42] [35]. The gain ratio 
of A  is defined as the information gain [40] of A  divided by its intrinsic value )(AIV  

using Eq. (4), 
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attribute A  takes the value of iA , k  is the number of distinct values of attribute A , 

and N  is the total number of instances in the dataset. 
 

(v)  Symmetric Uncertainty (SU) is a correlation measure between the features and the class, 
and it is obtained by [44] [1] Eq. (5), 

 

)()(

)|()(
2=

CEAE

ACECE
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       (5) 

 
where E(A) and E(C) are the entropies based on the probability associated with feature A  
and class value C . 
 

2.5. Cross Validation 
As discussed in the previous section, we need to make a comparison of performance 

between different ranking approaches using cross validation method. Cross validation is a 
statistical method of evaluating and comparing learning algorithms by dividing data into two 
portion of data for training and validating or testing the model. The goal is to compare the 
performance of different ranking approaches and find out the best approach for the gamelan 
instruments recognition. Cross validation can also be used to understand the generalization 
power of a classifier. 
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data is presented in Table 3. The first 7 features are consistently ranked as the top. The first 4 
features predicted by the five techniques gives the same results, although features 5, 6 and 8 
are reversed in some rankings. 

 
 

Table 2. Spectral-based features 

No Features 
Number of 
features 

1 Fundamental Frequency 1 
2 Spectral Centroid 1 

3-4 Spectral Rolloff 2 
5 Spectral Flux 1 
6 Spectral Skewness 1 
7 Spectral Moment 1 
8 Spectral Kurtosis 1 
9 Spectral Entropy 1 

10 Spectral Slope 1 
11 Spectral Bandwidth 1 
12 Mean 1 
13 Standard Deviation 1 
14 Mode 1 
15 Median 1 
16 Variance 1 

17-25 Percentile 9 
26-34 Quantile 9 

 

For each ranking method, investigation of recognition accuracy on the testing data as a 
function of the features has been done in ascending order and descending order. Recognition 
rate or accuracy was taken from prediction accuracy performed by SVMs. Accuracy results as a 
function n  number of features in ascending order are presented in Figure 7, for descending 
order are presented in Figure 8. We measured the performance for subsets consisting of the n  
ranked features. Where n  varies between 1 and 34, started from the least important features 
for ascending order and from the most important features for descending order. 

The SVM perform very well when all features or subsets of the original features are 
used. The peak accuracy was reached on the 19 until 22 best features in ranking by all 
techniques at accuracy of more or equal to 98.87%, and increasing the subsets did not improve 
the accuracy. Then the rest of the features can be deleted due to non-significant influence for 
the performance. Interestingly, the GR technique show the peak at accuracy of 98.93% (as 
shown at Table 5), the highest accuracy achievable using the five techniques. 

 
 

Table  3. The first twenty of feature ranks on the spectral-based gamelan features; see 
description in the text; all entries denote feature numbers shown in Table 2 

Methods 
Feature Rank 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
CS 1 3 2 4 8 5 6 11 10 28 34 29 30 15 31 32 12 33 7 26 
IG 1 3 2 4 5 8 6 11 34 28 32 29 33 31 15 30 7 10 27 12 
SU 1 3 2 4 5 8 6 11 34 32 31 29 28 30 15 33 10 7 12 27 
GR 1 3 2 4 8 5 6 11 31 32 18 14 17 30 15 29 10 34 33 28 
RF 1 3 2 4 6 8 5 13 27 32 26 33 28 30 15 29 31 12 10 11 

  
 

Table  4. Accuracy for gamelan dataset as a function of the worst n  ranked features 
(ascending order); for n=24..34  

Methods 
 

Accuracy (%) for the worst n  ranked features used for classification 
34 33 32 31 30 29 28 27 26 25 24 

CS 98.87 98.53 97.97 97.74 95.99 95.88 94.69 92.66 81.36 68.47 68.36 
IG 98.87 98.53 97.97 97.74 95.99 95.37 94.69 92.66 81.36 79.66 79.60 
SU 98.87 98.53 97.97 97.74 95.99 95.37 94.69 92.66 81.36 79.66 79.49 
GR 98.87 98.53 97.97 97.74 95.99 95.88 94.69 92.66 81.36 81.41 81.41 
RF 98.87 98.53 97.97 97.74 95.99 95.08 95.20 92.66 92.43 92.43 92.43 
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Figure 7 shows the degradation in the recognition rate or accuracy when the number of 
features subsets is reduced. A comparison of the five methods shows that the accuracy over 
90% achieved with RF subsets are better than another results (see Table 4). All the techniques 
show the same behavior without any significant differences. The accuracy is almost same until 
the subsets are reduced to 26 or less features, then the accuracy tends to decrease with 
reducing the subsets (see Table 4 and Figure 7). 

 
 

Figure 7. Accuracy for  gamelan dataset as a 
function of the worst n ranked features 

(ascending order) 

Figure 8. Accuracy for gamelan dataset as a 
function of the best n ranked features 

(descending order) 
 
 

Table  5. Accuracy for gamelan dataset as a function of the best n  ranked features 
(descending order); for n=19...23, 30…34  

Methods 
 

Accuracy (%) for the best n  ranked features used for classification 
34 33 32 31 30 ... 23 22 21 20 19 

CS 98.87 98.87 98.87 98.87 98.87  98.87 98.87 98.81 98.81 98.81 
IG 98.87 98.87 98.87 98.87 98.87  98.87 98.87 98.87 98.81 98.53 
SU 98.87 98.87 98.87 98.87 98.87  98.87 98.87 98.81 98.81 98.81 
GR 98.87 98.87 98.93 98.93 98.93  98.93 98.93 98.93 98.59 98.59 
RF 98.87 98.87 98.87 98.81 98.87  98.87 98.87 98.87 98.87 98.87 

 
 
For descending order, the accuracy is quite stable until the subsets reduced to 7 or less 

features. The seven features are fundamental frequency, spectral roll off 40%, spectral centroid, 
spectral roll off 90%, spectral flux, spectral kurtosis and spectral skewness. The first best 
feature give accuracy of 53.96%, the second best features give 66.95%, the third best features 
give 72.03%, and the seven best features give accuracy of 96.55% (as shown at Figure 8). 
 
 
4. Conclusion 

In this paper, we have presented in details our approach to perform feature ranking 
using five filter-based ranking methods. Although they all perform in a similar way, accuracy of 
the SVM classifier has been significantly influenced by the feature ranking. It shows that Gain 
Ratio (GR) technique gave better result than the other  four techniques.  The highest accuracy 
98.93% for GR was reached using the 21 best features. 

Five filter-based ranking methods have been evaluated. The first seven features 
predicted by the five techniques gives the same results. The first seven features are: 
fundamental frequency, spectral roll off 40%, spectral centroid, spectral roll off 90%, spectral 
flux, spectral kurtosis and spectral skewness. Those features give accuracy of 96.55% for 
gamelan instrument identification. 
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