
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 22, No. 4, August 2024, pp. 956~968

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v22i4.25847  956

Journal homepage: http://telkomnika.uad.ac.id

Multi objective hyperparameter tuning via random search on

deep learning models

Abdul Rahman Mohamad Rom, Nursuriati Jamil, Shafaf Ibrahim
College of Computing, Informatics and Mathematics, Universiti Technologi MARA, Selangor, Malaysia

Article Info ABSTRACT

Article history:

Received Nov 7, 2023

Revised Mar 6, 2024

Accepted Mar 29, 2024

 This research examines the efficacy of random search (RS) in hyperparameter

tuning, comparing its performance to baseline methods namely manual search

and grid search. Our analysis spans various deep learning (DL) architectures-

multilayer perceptron (MLP), convolutional neural network (CNN), and

AlexNet implemented on prominent benchmark datasets of Modified National

Institute of Standards and Technology (MNIST) and Canadian Institute for

Advanced Research-10 (CIFAR-10). In the context of this study, the

evaluation will be adopting a multi-objective framework, navigating the

delicate trade-offs between conflicting performance metrics, including

accuracy, F1-score, and model parameter size. The primary objective of

employing a multi-objective evaluation framework is to enhance the

understanding regarding the interactions of these performance metrics interact

and influence each other. In real-world scenarios, DL models often need to

strike a balance between these conflicting objectives. This research adds to

the increasing wealth of knowledge in hyperparameter tuning for DL models

and serves as a reference point for practitioners seeking to optimize their DL

architectures. The results of our analysis are positioned to provide invaluable

insights into the intricate balancing act required during the process of

hyperparameter fine-tuning. These insights will contribute to the ongoing

advancement of best practices in optimizing DL models and facilitating the

ongoing optimization of the DL models.

Keywords:

Convolutional neural network

Deep learning models

Hyperparameter tuning

Multiobjective optimization

Random search

This is an open access article under the CC BY-SA license.

Corresponding Author:

Shafaf Ibrahim

College of Computing, Informatics and Mathematics, Universiti Technologi MARA

Selangor, Malaysia

Email: shafaf2429@uitm.edu.my

1. INTRODUCTION

The advancement in artificial intelligence (AI) and deep learning (DL) have exerted a profound impact

on both scientific research and industry, and the application of DL to practical problems has been extensively

researched across a multitude of domains, including but not limited to medical diagnosis [1], scene

classification [2], autonomous vehicles [3], and among others. The rapid progress in DL has been facilitated

by several factors including access to vast amount of data, advancement in computational hardware, and the

development of the novel algorithm [4]. In DL implementations, the selection of appropriate hyperparameters

is very crucial as they hold a significant responsibility over the performance of the DL model [5], [6]. The

process of identifying the optimal set of hyperparameter is known as hyperparameter tuning [7]. Recognizing

the best choice of a hyperparameter is often a cumbersome process to a level that some people consider it as a

“black art” [8].

Currently, the predominant usage of hyperparameter tuning falls in the category of single objective

optimization (SOO). Numerous studies were done in the context of hyperparameter tuning [9]–[11]. These

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control 

Multi objective hyperparameter tuning via random search on … (Abdul Rahman Mohamad Rom)

957

studies were done by using hyperparameter tuning by using SOO approach which undeniably benefits from

the lower runtime, and a better convergence, but it restricts the performance evaluation to only a single

objective limiting its practical applicability to meet the need of optimization in the real-world scenario. In such

real-world contexts, the clashing between two conflicting objectives often arises, highlighting the need for

more versatile optimization strategies.

Thus, in this paper, the author proposes a multi-objective hyperparameter tuning in DL models,

utilizing a random search to identify the optimal hyperparameter configuration. As such, the target of this

research is to demonstrate the enhanced performance of DL architectures when utilizing random search,

particularly as the hyperparameter search space expands, in comparison to other conventional methods. In

addition to that, this investigation provides a thorough examination of performance metrics across various

hyperparameter tuning techniques within the realm of multi-objective optimization.

2. METHODS

This section includes the mechanism used namely multi-objective hyperparameter tuning and

hyperparameter tuning techniques which focuses on baseline methods and random search together with the

workflow of the research.

2.1. Multi objective hyperparameter tuning

Hyperparameters configuration λ is one of the key factors to the effectiveness of a learning algorithm

𝒜, either to minimize, or maximize a specific function, f. Finding the right hyperparameter configuration can

directly impact the performance of a DL model [6]. The act of identifying the optimal hyperparameters is

referred to as hyperparameter tuning [7], which is one of the crucial processes in the development of the DL

model. Mathematically, the effectiveness of a learning algorithm with assigned hyperparameters can be written

as 𝒜𝜆, and 𝑓 = 𝒜𝜆 (𝑋
(𝑡𝑟𝑎𝑖𝑛)) for a training set 𝑋(𝑡𝑟𝑎𝑖𝑛). For example, with a convolutional neural network

(CNN) model, where learning rate is l and epoch size as e, the 𝜆 = (𝑙, 𝑒). Now, the search space for

hyperparameter configuration in the context of machine learning (ML) can be defined mathematically using

the product symbol of ∏ as stated in the (1), where n represents the hyperparameters, each parameter has mi

possible values.

𝑁 = ∏ 𝑚𝑖
𝑛
𝑖=1 (1)

With an increasing number of hyperparameters, the size of dimension space containing all of the

hyperparameter configurations increases exponentially [12]. Due to the increasing in size of dimensionality,

the implementation of hyperparameter tuning using handcrafted approaches is tedious, laborious, prone to

errors, and consumes a lot of computing power [13]. In the context of real-world scenario, the process of

objectives of optimization tends to be conflicting from one to another. Within this event, the implementation

of multi objective optimization (MOO) are more relevant to be implemented to satisfy the requirement from

both conflicting objectives.

As instances within the discipline of DL, the objectives can vary depending on the classification or

the efficiency performances, where it could be in the form of accuracy, F1-score, loss function, size of the

model, latency, and to name a few. Based on previous studies, various examples of MOO are being

implemented into the discipline of DL, such as accuracy vs computational complexity [14], accuracy vs

specificity vs sensitivity [15], and accuracy vs latency [16]. Contrary to that, this study will be implementing

MOO, and the performance will be evaluated between three conflicting objectives of accuracy, F1- score and

weight of the model by using random search. Theoretically, multi-objective optimization can be expressed as

either a minimization or maximization problem, as shown in (2) [17]:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐹(𝑥 ⃗⃗⃗⃗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {𝑓1 (𝑥 ⃗⃗⃗) , 𝑓2 (𝑥 ⃗⃗⃗), … , 𝑓𝑜 (𝑥 ⃗⃗⃗) }

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝐹(𝑥 ⃗⃗⃗⃗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {𝑓1 (𝑥 ⃗⃗⃗) , 𝑓2 (𝑥 ⃗⃗⃗), … , 𝑓𝑜 (𝑥 ⃗⃗⃗) }

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔𝑖 (𝑥 ⃗⃗⃗) ≥ 0, 𝑖 = 1, 2, … ,𝑚

ℎ𝑖(𝑥 ⃗⃗⃗) = 0, 𝑖 = 1, 2, … , 𝑝

𝑙𝑏𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑖 , 𝑖 = 1, 2, … , 𝑛 (2)

Consider a vector, denoted as (𝑥 ⃗⃗⃗), which represents a collection of variables
(𝑥 ⃗⃗⃗ = 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥𝑛−1, 𝑥𝑛) relevant to the given problem, where n represents the quantity of variables, m

denotes the count of inequality constraints, p signifies the number of equality constraints, lbi denotes the lower

boundary of the i-th variable, and ubi denotes the upper boundary of the i-th variable. Based on the above

formulation, there is a vector that store multiple variables which also referred to as parameters or decision

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 956-968

958

variables. This vector encapsulates all the relevant variables of the problem and is input into the objective

function, which yield a numerical result.

2.2. Hyperparameter tuning techniques

In the current practice, the implementation of hyperparameter tuning is done in the traditional way,

which involves human directly to manually tuning the hyperparameter. Manual tuning entails modifying

hyperparameters through intuition or trial and error [18]. However, as depicted, this method is both

time-consuming and may not yield optimal results as it relies on the expertise of the practitioner [19]. There is

another widely use method for hyperparameter which act as an alternative to manual tuning, which is called

grid search [20].

Grid search has become the predominant baseline optimization strategy for hyperparameter tuning [21].

The theoretical concept of grid search is to try all possible solution which leads to finding the most accurate

solution [22] yet it will be afflicted by the curse of dimensionality [23]. Consequently, the effectiveness of grid

search in locating the optimal solution within the search space depends on the dimension size where the

increasing number of hyperparameters will contribute to increase the dimension size exponentially. Figure 1

illustrates the disparity of grid search and random search.

Figure 1. Grid search vs random search [24]

To address the limitation of the grid search, a promising approach is the random search technique.

Contrary to grid search, random search sample hyperparameters value randomly within the searching space [24].

The different between grid search and random search are illustrated in Figure 1. The key advantage of random

search lies on its simplicity and ease of implementation [24]. Unlike other optimization techniques, random

search able to achieve improved outcomes through exploring a broader, albeit less appealing configuration

space [25], can be automated and it does not require any gradient information or any other prior knowledge

about the optimization landscape [26]. This makes it ideal for problems where the optimization landscape is

complex and poorly understood. Within the scope of this study, hyperparameter tuning will be conducted using

random search.

2.3. Workflow of the research

In the context of Figure 2, there are a few distinct phases, each of which plays a crucial role in this

research. These phases include the process of data preparation and configuration, the process of hyperparameter

optimization and the systematic process of analysis and conclusion. Figure 2 shows the flowchart of this

research from the general perspective.

Figure 2. Schematic representation of the research methodology

TELKOMNIKA Telecommun Comput El Control 

Multi objective hyperparameter tuning via random search on … (Abdul Rahman Mohamad Rom)

959

2.3.1. Data collection

The data that will be used in this experiment is the benchmark datasets that are typically implemented

in DL experiments. One of the most popular lightweight benchmark datasets for image classification is

Modified National Institute of Standards and Technology (MNIST) which consists a dataset of 60,000

handwritten digit images for training and an additional 10,000 images for testing [27]. Each of the images in

the MNIST dataset is the grayscale images with a resolution of 28×28 pixels. Notably, MNIST dataset

represents ten classes which consists of digit 0 to 9. The other benchmark dataset that will be used in this

experiment is Canadian Institute for Advanced Research-10 (CIFAR-10), which is also famously known for

image classification. CIFAR-10 dataset comprises 60,000 red, green, and blue (RGB) images, each with a

resolution of 32x32 pixels. These images are divided and represented into ten classes consisting of animals,

and vehicles [28].

2.3.2. Data preparation and configuration

As referred to Figure 3, the process of data preparation and configuration consists of four crucial

phases, starting from splitting the data. The process of splitting the data is to partition the dataset into training

and testing subsets, with the former being utilized for model training and the latter to evaluate the model’s

performance. Subsequently, the data undergo normalization to ensure consistency in scale and distribution

across features.

Figure 3. Flowchart for the process of data preparation and configuration

Following to the process of data normalization, the continued step involves the processing of

reshaping the dataset to a new resolution of 64×64 pixels. This adjustment is necessary as it aligns with the

subsequent design choice of reducing the kernel size in the network architecture, which precedes the application

of max-pooling layer. By going through the process of reshaping the data, the model can effectively capture

and extract meaningful features while ensuring compatibility with subsequent layers in the network. Finally,

the search space is set up according to the hyperparameters outlined in Table 1. The dimension of each

searching space is differ based on number of hyperparameters, and values of hyperparameters.

2.3.3. Hyperparameters

Hyperparameters are a set of parameters used for learning process during training and testing [29]. In

this experiment, the choices of hyperparameters depend on the DL architecture due to the existence of extra

convolutional or any other hidden layers. Based on the Table 1, the configuration of hyperparameters will be as:

Table 1 shows the hyperparameters used in multilayer perceptron (MLP), CNN, and AlexNet

architectures for this experiment. The recorded hyperparameters in the Table 1 can be categorized into two

groups, which are (1) hyperparameters for network architecture, which directly impact the parameters number

and the model size, and (2) hyperparameters for learning structures, which associated with the learning

structure, and does not impact on the number of parameters and final model size.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 956-968

960

Table 1. The hyperparameters in different DL architecture (a) MLP, (b) CNN, and (c) AlexNet
Hyperparameters Description Range/values

LR Learning rate [1, 0.1, 0.01, 0.001, 0.0001]
NE Number of epochs [10, 20, 30, 40, 50]

BS Batch size [32, 64, 128, 256, 512]

OP Optimizer [‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’]
LR Learning rate [1, 0.1, 0.01, 0.001, 0.0001]

NE Number of epochs [10, 20, 30, 40, 50]

BS Batch size [32, 64, 128, 256, 512]
OP Optimizer [‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’]

LR Learning rate [1, 0.1, 0.01, 0.001, 0.0001]

NE Number of epochs [10, 20, 30, 40, 50]
BS Batch size [32, 64, 128, 256, 512]

OP Optimizer [‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’]

NF1 Number of filter (1) [16, 32, 64, 96]
KS1 Kernel size (1) [3, 4, 5, 6]

NF2 Number of filter (2) [48, 64, 96, 128]

KS2 Kernel size (2) [3, 4, 5, 6]
NF3 Number of filter (3) [64, 96, 128]

KS3 Kernel size (3) [3, 4, 5]

AC Activation [‘relu’,’elu’]
LR Learning rate [1, 0.1, 0.01, 0.001, 0.0001]

NE Number of epochs [10, 20, 30, 40, 50]

BS Batch size [32, 64, 128, 256, 512]
OP Optimizer [‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’]

NF1 Number of filter (1) [16, 32, 64, 96]

KS1 Kernel size 1 [3, 4, 5, 6]
NF2 Number of filter (2) [48, 64, 96, 128]

KS2 Kernel size (2) [3, 4, 5, 6]

NF3 Number of filter (3) [64, 96, 128]
KS3 Kernel size (3) [3, 4, 5]

NF4 Number of filter (4) [64, 96, 128]

KS4 Kernel size (4) [3, 4]
NF5 Number of filter (5) [64, 96, 128]

KS5 Kernel size (5) [3, 4]

AC Activation [‘relu’,’elu’]

2.3.4. Hyperparameter tuning via random search

Hyperparameter tuning will be conducted using random search, and the performance will be evaluated

and compared to the other baseline methods. The time constraints are applied to random search and other

baseline methods and will serve as a stopping criterion after 24 hours. The procedural details of random search

within this study are depicted in Figure 4.

Figure 4. The random search process

TELKOMNIKA Telecommun Comput El Control 

Multi objective hyperparameter tuning via random search on … (Abdul Rahman Mohamad Rom)

961

As illustrated in Figure 4, the process in random search consists of three important elements, sample

random hyperparameter, evaluate model, and check the stopping criteria to re-iterate the procedure. Once the

stopping criteria is met, the result is recorded and will be analyzed to compare with the other baseline methods.

In the end, the collective results for random search and other baseline methods contributing valuable insights

to the research community.

2.3.5. Performance evaluation

The performance evaluation in this study will be assessed by using the trading off between accuracy,

F1-score, and number of parameters. The evaluation of the classification metrics, specifically accuracy, can be

formulated by utilizing the confusion matrix, which comprises four key components. The components involved

are true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The formula to measure

accuracy is constructed from the elements stored within the confusion matrix. Table 2 presents the confusion

matrix and demonstrates the calculation for accuracy and F1-score.

Table 2. The illustration of confusion matrix to calculate accuracy and F1-score
 Positive Negative

Positive TP FN

Negative FP TN
Recall
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

recision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Negative predictive value (NPV)
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

Accuracy
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃

In addition to accuracy, another classification metric that will be examined in this study is F1-score.

F1-score can be defined as the measurement of the harmonic mean of precision and recall [30], offering a fair

evaluation of the model’s performance. F1-score can be measured by using the recall, and precision as stated

in Table 2. Precision is the proportion of instances predicted as positive, while recall represents the ratio of

correctly identified positive instances to the total number of actual positive instances. In (3) shows the formula

to measure the F1-score.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
 (3)

Another performance metric that will be evaluated in this study is weight of the model, which will be

determined in the form of parameters number. Theoretically, the higher the parameters number indicates the

bigger model size as using similar mechanism in [31]. To assess performance from a multi-objective

perspective, it is best to aggregate the three opposing criteria of accuracy, F1-score and weight of the model.

Due to the contradict direction of objectives, where the greater values are desired for the accuracy and

F1-score, while a lesser number of parameters is preferred, the procedure of normalising and inverting the

number of parameters is necessary. This is done to ensure that these indicators are in line with the same

direction for each of the metrics, enabling a fair comparison and trade-off between two conflicting objectives.

The formula for the weighted sum is (4):

max_ 𝑝𝑎𝑟𝑎𝑚𝑠 = 𝑚𝑎𝑥(𝑃)

min_ 𝑝𝑎𝑟𝑎𝑚𝑠 = 𝑚𝑖𝑛(𝑃)

inversed_normalized_params = (max_params – Px) / (max_params – min_params)

weighted_sum= (F1_score * w1) +(Accuracy * w2) + (inversed_normalized_params * w3) (4)

In the context of the (4), 𝑃 refers to the parameters, while w refers to the performance metrics weight. As for this

study, the priority for all of the performance metrics is equal, thus the value for w1, w2, and w3 are set to 1.

3. RESULT AND ANALYSIS

The performance evaluation of hyperparameter tuning is explored through random searches across

different DL architectures, including MLP, CNN, and AlexNet on MNIST and CIFAR-10 datasets. The random

search performance will be compared against two baseline methods namely (1) manual search, and (2) grid

search. Based on the experiment, it is proven the process of manual search required expertise, experience, and

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 956-968

962

prone to biasness. With that being said, the alternative baseline methods which is grid search can be

computationally expensive, particularly under the worst circumstances, in which the optimal hyperparameter

configuration is positioned at the end of the sequential order.

Within the scope of this experiment, as depicted in Table 3 the dimension size of searching space

containing hyperparameter configurations drastically increased as the number of hyperparameters increased. If

given the time constraint of 24 hours, the process of grid search only realistic to be executed completely on

MLP architecture only. Table 3 records the exploration of the hyperparameter values and search space

dimension.

Table 3. The hyperparameter values and the search space dimension

DL
architecture

Hyperparameters Value
Num of

combinations

Avg time each

combination (s)
Est total time (hours)

MNIST CIFAR-10 MNIST CIFAR-10

MLP Epoch [10, 20, 30, 40, 50] 980 27.03 30.30 7.35 8.24

Batch size [32, 64, 128, 256,

512]

Learning rate [1, 0.1, 0.01, 0.001,
0.0001]

Optimizer [‘SGD’, ‘RMSprop’,

‘Adagrad’,
‘Adadelta’, ‘Adam’,

‘Adamax’, ‘Nadam’]
CNN Epoch [10, 20, 30, 40, 50] 2,268,000 69.73 90.65 43929.9 57109.5

Batch size [32, 64, 128, 256,

512]
Learning rate [1, 0.1, 0.01, 0.001,

0.0001]

Optimizer [‘SGD’, ‘RMSprop’,
‘Adagrad’,

‘Adadelta’, ‘Adam’,

‘Adamax’, ‘Nadam’]
Number of filter

(1)

[16, 32, 64, 96]

Kernel size (1) [3, 4, 5]
Number of filter

(2)

[48, 64, 96, 128]

Kernel size (2) [3, 4, 5]
Number of filter

(3)

[64, 96, 128]

Kernel size (3) [3, 4, 5]
Activation [‘relu’, ‘elu’]

AlexNet Epoch [10, 20, 30, 40, 50] 145,152,000 207.81 230.21 8,378,899.2 9.282,067.2

Batch size [32, 64, 128, 256,
512]

Learning rate [1, 0.1, 0.01, 0.001,

0.0001]
Optimizer [‘SGD’, ‘RMSprop’,

‘Adagrad’,

‘Adadelta’, ‘Adam’,
‘Adamax’, ‘Nadam’]

Number of filter

(1)

[16, 32, 64, 96]

Kernel size (1) [3, 4, 5, 6]

Number of filter

(2)

[48, 64, 96, 128]

Kernel size (2) [3, 4, 5, 6]

Number of filter

(3)

[64, 96, 128]

Kernel size (3) [3, 4, 5]

Number of filter

(4)

[64, 96, 128]

Kernel size (4) [3, 4]

Number of filter

(5)

[64, 96, 128]

Kernel size (5) [3, 4]

Within the scope of this experiment, where the time constraint is 24 hours, the process of grid search

can only be done affectively on MLP architecture, which is equivalent to 7.35 hours and 8.24 hours to

TELKOMNIKA Telecommun Comput El Control 

Multi objective hyperparameter tuning via random search on … (Abdul Rahman Mohamad Rom)

963

completely sample all hyperparameter configuration in the hyperparameter search space. Whereas, by

implementing grid search on other DL architectures, it takes more than 24 hours to completely executed. Due

to that, the probability of random search to perform better is higher if the optimal solution located beyond the

sequential order explored by grid search in CNN, and AlexNet architecture. The finding of optimal

hyperparameter configuration from multi-objective point of view using Pareto method for MLP, CNN, and

AlexNet on MNIST dataset by using random search are plotted in Figures 5(a)-(c).

(a)

(b)

(c)

Figure 5. The Pareto identification for different architectures on MNIST dataset: (a) MLP, (b) CNN, and (c)

AlexNet

Based on the graphical representation in Figure 5, the Pareto identification is marked red on each of

the graphs according to Figure 5(a) MLP, Figure 5(b) CNN, and Figure 5(c) AlexNet. Within the context of

the MNIST dataset, the Pareto identification for the MLP yields an accuracy of 0.9833, an F1-score of 0.9832,

and normalized parameters equating to 1. In the realm of CNN, the Pareto identification manifests an accuracy

of 0.9923, an F1-score of 0.9923, and normalized parameters holding a value of 1.0. Lastly, within the

framework of the AlexNet architecture, the Pareto identification culminates in an accuracy of 0.9892, an F1-score

of 0.9891, and normalized parameters measuring at 0.9287. Figures 6(a)-(c) shows the Pareto identification for

MLP, CNN, and AlexNet on CIFAR-10 dataset.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 956-968

964

(a)

(b)

(c)

Figure 6. The Pareto identification for different architectures on CIFAR-10 dataset: (a) MLP, (b) CNN, and

(c) AlexNet

According to Figure 6, the Pareto identification is marked red on each of the corresponding graphs

for MLP denoted as Figure 6(a), CNN denoted as Figure 6(b), and AlexNet denoted as Figure 6(c). Within the

context of the MNIST dataset, the Pareto identification for the MLP yields an accuracy of 0.5260, an F1-score

of 0.5223, and normalized parameters equating to 1. Conversely in CNN, the Pareto identification manifests

an accuracy of 0.7082, an F1-score of 0.7087, and normalized parameters holding a value of 0.9341. Lastly,

within the framework of the AlexNet architecture, the Pareto identification culminates in an accuracy of 0.6834,

an F1-score of 0.6811, and normalized parameters measuring at 0.9437. Tables 4 to 6 shows the recorded top-10

results for the process of hyperparameter tuning on MNIST dataset and various architectures (MLP, CNN, and

AlexNet respectively). The columns involved in these tables are optimizer (OPT), learning rate (LR), batch size

(BS), epochs (EP), activation (ACT), kernel 1 (K1), kernel 2 (K2), kernel 3 (K3), kernel 4 (K4), kernel 5 (K5),

filter 1 (F1), filter 2 (F2), filter 3 (F3), filter 4 (F4), and filter 5 (F5).

Table 4. The results for hyperparameter tuning using random search on MLP architecture and MNIST dataset
OPT LR BS EP ACT Accuracy F1-score Normalized params Sum params accuracy F1-score

Adagrad 0.100 32 30 elu 0.9833 0.9832 1 2.9665

Adadelta 1.000 64 40 relu 0.9823 0.9822 1 2.9645
Adagrad 0.100 32 40 elu 0.9822 0.9821 1 2.9643

Adagrad 0.100 32 40 elu 0.9817 0.9815 1 2.9632

Adagrad 0.100 32 20 relu 0.9814 0.9812 1 2.9626

TELKOMNIKA Telecommun Comput El Control 

Multi objective hyperparameter tuning via random search on … (Abdul Rahman Mohamad Rom)

965

Table 5. The results for hyperparameter tuning using random search on CNN architecture and MNIST dataset

K1 K2 K3 F1 F2 F3 OPT LR BS EP ACT Accuracy
F1-

score

Normalized

params

Sum
params

accuracy

F1-score

3 3 3 16 48 64 Adagrad 0.1 32 10 relu 0.9923 0.9923 1.000 2.9847
4 5 3 16 64 64 RMSprop 0.0001 64 30 elu 0.9898 0.9897 0.9681 2.9476

4 3 4 32 48 64 RMSprop 0.0001 256 30 elu 0.9870 0.9869 0.9665 2.9404

3 4 3 32 64 64 RMSprop 0.0010 512 50 elu 0.9918 0.9917 0.9470 2.9305
4 3 3 96 48 64 Nadam 0.0001 128 20 elu 0.9896 0.9895 0.9454 2.9245

Table 6. The results for hyperparameter tuning using random search on AlexNet architecture and MNIST

dataset

K1 K2 K3 K4 K5 F1 F2 F3 F4 F5 ACT OPT LR BS EP Accuracy
F1-

score

Normalized

params

Sum params
accuracy F1-

score

5 3 3 3 4 32 64 128 64 64 elu Adagrad 0.0100 128 30 0.9892 0.9891 0.9287 2.9069
3 5 3 4 4 32 48 96 64 64 relu Adadelta 1.0000 512 10 0.9851 0.9849 0.9182 2.8882

6 4 3 3 3 16 128 96 128 64 relu Adagrad 0.1000 512 20 0.9900 0.9899 0.8431 2.8231

4 3 5 4 3 16 48 64 64 96 elu Adam 0.0010 64 10 0.9779 0.9779 0.8365 2.7923
6 4 4 3 4 16 96 64 128 64 elu Adadelta 0.0100 32 10 0.9673 0.9672 0.8432 2.7776

Based on Table 4 on MLP architecture, the best combination of hyperparameters is (OPT=Adagrad,

LR=0.1, BS=32, EP=30, ACT=elu) which resulted to accuracy of 0.9833, F1-score of 0.9832 and inversed

normalized params of 1.0. The sum of normalized params, accuracy and F1-score is 2.9665. Whereas, in CNN

architecture, the best combination of hyperparameters is (K1=3, K2=3, K3=3, F1=16, F2=48, F3=64,

OPT=Adagad, LR=0.1, BS=32, EP= 10, and ACT=relu) which resulted to accuracy of 0.9923, F1-score of

0.9923 and normalized params of 1.0. The sum of total three metrics altogether is 2.9847. Meanwhile, the result

for AlexNet architecture is accuracy of 0.9892, F1-score of 0.9891, and normalized params of 0.9287, where

the sum of those metrics is 2.9069. The best combination that resulting to the result is (K1=5, K2=3, K3=3,

K4=3, K5=4, F1=32, F2=64, F3=128, F4=64, F5=64, ACT=elu, OPT=Adagrad, LR=0.01, BS =128 and

EP=30. Tables 7 to 9 shows the recorded top-10 results for the process of hyperparameter tuning on CIFAR-10

dataset and various architectures (MLP, CNN, and AlexNet respectively).

Table 7. The results for hyperparameter tuning using random search on MLP architecture and CIFAR-10

dataset
OPT LR BS EP ACT Accuracy F1-score Normalized params Sum params accuracy F1-score

Nadam 0.0001 32 50 elu 0.5260 0.5223 1 2.0483

Adagrad 0.0100 32 50 elu 0.5219 0.5190 1 2.0409

Adagrad 0.0100 32 40 elu 0.5140 0.5126 1 2.0266
Nadam 0.0001 128 50 relu 0.5162 0.5103 1 2.0265

Adagrad 0.0100 128 40 elu 0.5158 0.5103 1 2.0261

Table 8. The results for hyperparameter tuning using random search on CNN architecture and CIFAR-10

dataset

K1 K2 K3 F1 F2 F3 OPT LR BS EP ACT Accuracy
F1-

score
Normalized

params

Sum

params
accuracy

F1-score

3 3 5 32 48 64 Adamax 0.0010 64 40 relu 0.7082 0.7087 0.9341 2.3510

5 3 3 96 64 64 Adagrad 0.0100 32 20 elu 0.6982 0.6964 0.9062 2.3008
3 3 3 16 48 128 Adagrad 0.1000 32 40 relu 0.6735 0.6736 0.9535 2.3005

4 3 3 16 64 64 Adamax 0.0100 512 10 relu 0.6481 0.6462 1.0000 2.2943

3 4 4 16 64 64 Adagrad 0.0100 64 40 relu 0.6739 0.6754 0.9446 2.2939

Based on Table 7 on MLP architecture, the best combination of hyperparameters is (OPT=Nadam,

LR=0.0001, BS=32, EP=50, ACT=elu) which resulted to accuracy of 0.5260, F1-score of 0.5223 and inversed

normalized params of 1.0. The sum of normalized params, accuracy and F1-score is 2.9665. Whereas, in CNN

architecture, the best combination of hyperparameters is (K1=3, K2=3, K3=5, F1=32, F2=48, F3=64,

OPT=Adamax, LR=0.001, BS=64, EP=40, and ACT=relu) which resulted to accuracy of 0.7082, F1-score of

0.7087 and normalized params of 0.9341. The sum of total three metrics altogether is 2.3510. Meanwhile, the

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 956-968

966

result for AlexNet architecture is accuracy of 0.6834, F1-score of 0.6811, and normalized params of 0.9473,

where the sum of those metrics is 2.3118. The best combination that resulting to the result is (K1=6, K2=4,

K3=3, K4=3, K5=3, F1=32, F2=48, F3=96, F4=96, F5=64, ACT=relu, OPT=Adamax, LR=0.001, BS = 64,

and EP=10.

Table 9. The results for hyperparameter tuning using random search on AlexNet architecture and CIFAR-10

dataset

K1 K2 K3 K4 K5 F1 F2 F3 F4 F5 ACT OPT LR BS EP Accuracy
F1-

score

Normalized

params

Sum params
accuracy F1-

score

6 4 3 3 3 32 48 96 96 64 relu Adamax 0.0010 64 10 0.6834 0.6811 0.9473 2.3118

6 3 3 3 4 64 96 64 96 64 elu SGD 0.0100 32 20 0.6827 0.6816 0.9055 2.2698
4 4 3 3 3 16 64 64 64 64 elu Adam 0.0001 32 50 0.6127 0.6118 1.0000 2.2245

5 5 4 3 3 64 96 64 96 64 relu Nadam 0.0001 64 20 0.6796 0.6777 0.8421 2.1994

3 4 3 3 4 32 48 64 96 64 relu Adagrad 0.1000 256 20 0.6174 0.6144 0.9480 2.1798

Based on the result as recorded in Tables 10 to 12, the results obtained from hyperparameter tuning

across multiple DL architecture show the distinct patterns of performance for different optimization methods.

As recorded, the result of random search appears to be standout performer consistently demonstrating superior

results compared to manual search and grid search. However, on MLP architecture, grid search outperforms

other methods of hyperparameter tuning due to the hyperparameter search space is small and manageable for

grid search to completely execute the whole iteration within the time constraint given.

Table 10. Results of hyperparameter tuning by using MLP
MLP

Hyperparameter tuning methods Dataset Accuracy F1-score Number of params

Manual search MNIST 0.9813 0.9812 101,770

CIFAR-10 0.5260 0.5223 394,634

Grid search MNIST 0.9826 0.9829 101,770

CIFAR-10 0.5084 0.5058 394,634

Random search MNIST 0.9833 0. 9832 101,770
CIFAR-10 0.5051 0.5005 394,634

Table 11. Results of hyperparameter tuning by using CNN
CNN

Hyperparameter tuning methods Dataset Accuracy F1-score Number of params
Manual search MNIST 0.977 0.9769 82,970

CIFAR-10 0.6631 0.6604 133,450

Grid search MNIST 0.9907 0.9906 92,698
CIFAR-10 0.6579 0.6578 133,466

Random search MNIST 0.9923 0.9923 40.602

CIFAR-10 0.7082 0.7087 94,202

Table 12. Results of hyperparameter tuning by using AlexNet
AlexNet

Hyperparameter tuning methods Dataset Accuracy F1-score Number of params

Manual search MNIST 0.975 0.974 17,572,650
CIFAR-10 0.6373 0.6385 17,448,154

Grid search MNIST 0.9876 0.9875 17,131,674

CIFAR-10 0.6919 0.6904 17,638,378
Random search MNIST 0.9892 0.9891 17,321,098

CIFAR-10 0.6834 0.6811 17,296,602

4. CONCLUSION

Our study thoroughly explored the effectiveness of multi-objective (MO) hyperparameter tuning

methods, particularly focusing on random search in comparison to manual and grid search techniques, using

MNIST and CIFAR-10 datasets. Our findings demonstrate that random search generally outperforms other

baseline methods, although grid search proves advantageous in scenarios with limited hyperparameter search

spaces and time constraints. Notwithstanding the positive outcomes of random search, it suffers from certain

TELKOMNIKA Telecommun Comput El Control 

Multi objective hyperparameter tuning via random search on … (Abdul Rahman Mohamad Rom)

967

limitations, including inconsistency in results due to its random sampling approach, potential redundancy, and

inefficiency. Addressing these limitations, we advocate for the exploration of advanced optimization

techniques, such as genetic algorithms (GA), which capitalize on prior information to enhance consistency and

efficiency in hyperparameter tuning. GA offers numerous advantages, including the ability to handle

interdependencies among hyperparameters, explore broader search spaces, and converge rapidly to multiple

optimal solutions. Furthermore, GA's parallelizability enhances computational efficiency. Future research

endeavors should focus on evaluating the efficacy of GA for MO hyperparameter tuning, juxtaposed with other

baseline methods like random search, grid search, and manual search. Such comparative analyses promise

deeper insights into optimizing hyperparameter tuning for multi-objective problems, potentially elevating the

performance and generalizability of machine learning models across diverse datasets and applications.

ACKNOWLEDGEMENTS

The Ministry of Higher Education Malaysia (MoHE) and Universiti Teknologi MARA provided

support for this research through the Fundamental Research Grant Scheme (FRGS) (600-RMC/FRGS 5/3

(024/2021)).

REFERENCES
[1] M. Tsuneki, “Deep learning models in medical image analysis,” Journal of Oral Biosciences, vol. 64, no. 3, pp. 312–320, Sep.

2022, doi: 10.1016/j.job.2022.03.003.

[2] D. Zeng et al., “Deep Learning for Scene Classification: A Survey,” 2021, doi: https://doi.org/10.48550/arXiv.2101.10531.
[3] J. D. Choi and M. Y. Kim, “A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles and deep

learning based object detection,” ICT Express, vol. 9, no. 2, pp. 222–227, Apr. 2023, doi: 10.1016/j.icte.2021.12.016.

[4] Q. Wang, S. Bi, M. Sun, Y. Wang, D. Wang, and S. Yang, “Deep learning approach to peripheral leukocyte recognition,” PLoS
ONE, vol. 14, no. 6, p. e0218808, 2018, doi: 10.1371/journal.pone.0218808.

[5] A. A. R. K. Bsoul, M. A. Al-Shannaq, and H. M. Aloqool, “Maximizing CNN Accuracy: A Bayesian Optimization Approach with

Gaussian Processes,” in 9th 2023 International Conference on Control, Decision and Information Technologies, IEEE, Jul. 2023,
pp. 2597–2602, doi: 10.1109/CoDIT58514.2023.10284448.

[6] A. Morales-Hernández, I. V. Nieuwenhuyse, and S. R. Gonzalez, “A survey on multi-objective hyperparameter optimization

algorithms for machine learning,” Artificial Intelligence Review, vol. 56, no. 8, pp. 8043–8093, Aug. 2023, doi: 10.1007/s10462-

022-10359-2.

[7] R. Krithiga and E. Ilavarasan, “Hyperparameter tuning of AdaBoost algorithm for social spammer identification,” International

Journal of Pervasive Computing and Communications, vol. 17, no. 5, pp. 462–482, Dec. 2020, doi: 10.1108/IJPCC-09-2020-0130.
[8] A. Aghaebrahimian and M. Cieliebak, “Hyperparameter tuning for deep learning in natural language processing,” CEUR Workshop

Proceedings, vol. 2458, 2019.

[9] Sukamto, Hadiyanto, and Kurnianingsih, “KNN Optimization Using Grid Search Algorithm for Preeclampsia Imbalance Class,”
E3S Web of Conferences, vol. 448, p. 02057, Nov. 2023, doi: 10.1051/e3sconf/202344802057.

[10] S. Sah, B. Surendiran, R. Dhanalakshmi, and M. Yamin, “Covid-19 cases prediction using SARIMAX Model by tuning

hyperparameter through grid search cross-validation approach,” Expert Systems, vol. 40, no. 5, Jun. 2022, doi: 10.1111/exsy.13086.
[11] I. Jamaleddyn, R. El Ayachi, and M. Biniz, “An improved approach to Arabic news classification based on hyperparameter tuning

of machine learning algorithms,” Journal of Engineering Research (Kuwait), vol. 11, no. 2, p. 100061, Jun. 2023, doi:

10.1016/j.jer.2023.100061.
[12] M. A. Amirabadi, M. H. Kahaei, and S. A. Nezamalhosseini, “Novel suboptimal approaches for hyperparameter tuning of deep

neural network [under the shelf of optical communication],” Physical Communication, vol. 41, p. 101057, Aug. 2020, doi:

10.1016/j.phycom.2020.101057.
[13] L. Wen, X. Ye, and L. Gao, “A new automatic machine learning based hyperparameter optimization for workpiece quality

prediction,” Measurement and Control (United Kingdom), vol. 53, no. 7–8, pp. 1088–1098, Aug. 2020, doi:

10.1177/0020294020932347.
[14] S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer, “Neural networks designing neural networks: Multi-objective hyper-

parameter optimization,” in IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, New

York, NY, USA: ACM, Nov. 2016, pp. 1–8, doi: 10.1145/2966986.2967058.
[15] S. S. Mostafa, F. Mendonca, A. G. Ravelo-Garcia, G. Julia-Serda, and F. Morgado-Dias, “Multi-Objective Hyperparameter

Optimization of Convolutional Neural Network for Obstructive Sleep Apnea Detection,” IEEE Access, vol. 8, pp. 129586–129599,

2020, doi: 10.1109/ACCESS.2020.3009149.
[16] S. P. Chen, J. Wu, and X. Y. Liu, “EMORL: Effective multi-objective reinforcement learning method for hyperparameter

optimization,” Engineering Applications of Artificial Intelligence, vol. 104, p. 104315, Sep. 2021, doi:

10.1016/j.engappai.2021.104315.
[17] N. Gunantara, “A review of multi-objective optimization: Methods and its applications,” Cogent Engineering, vol. 5, no. 1, pp. 1–

16, Jan. 2018, doi: 10.1080/23311916.2018.1502242.

[18] M. A. Setitra, M. Fan, and Z. E. A. Bensalem, “An efficient approach to detect distributed denial of service attacks for software
defined internet of things combining autoencoder and extreme gradient boosting with feature selection and hyperparameter tuning

optimization,” Transactions on Emerging Telecommunications Technologies, vol. 34, no. 9, Sep. 2023, doi: 10.1002/ett.4827.

[19] A. Kaplunovich, “Real Time Automatic Hyperparameter Tuning for Deep Learning in Serveless Cloud,” 2020.
[20] D. M. Belete and M. D. Huchaiah, “Grid search in hyperparameter optimization of machine learning models for prediction of

HIV/AIDS test results,” International Journal of Computers and Applications, vol. 44, no. 9, pp. 875–886, Sep. 2022, doi:

10.1080/1206212X.2021.1974663.
[21] T. Yarally, L. Cruz, D. Feitosa, J. Sallou, and A. Van Deursen, “Uncovering Energy-Efficient Practices in Deep Learning Training:

Preliminary Steps Towards Green AI,” in Proceedings-2023 IEEE/ACM 2nd International Conference on AI Engineering-Software
Engineering for AI, IEEE, May 2023, pp. 25–36, doi: 10.1109/CAIN58948.2023.00012.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 956-968

968

[22] M. Ogunsanya, J. Isichei, and S. Desai, “Grid search hyperparameter tuning in additive manufacturing processes,” Manufacturing

Letters, vol. 35, pp. 1031–1042, Aug. 2023, doi: 10.1016/j.mfglet.2023.08.056.
[23] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms and Applications,” 2020, doi:

http://arxiv.org/abs/2003.05689.

[24] J. Bergstra and B. Yoshua, “Random search for hyper-parameter optimization yoshua bengio,” Journal of Machine Learning
Research, vol. 13, no. 10, pp. 281–305, 2012.

[25] Y. A. Ali, E. M. Awwad, M. Al-Razgan, and A. Maarouf, “Hyperparameter Search for Machine Learning Algorithms for Optimizing

the Computational Complexity,” Processes, vol. 11, no. 2, p. 349, Jan. 2023, doi: 10.3390/pr11020349.
[26] E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic

sentiment analysis,” Informatics, vol. 8, no. 4, p. 79, Nov. 2021, doi: 10.3390/informatics8040079.

[27] L. Deng, “The MNIST database of handwritten digit images for machine learning research,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, Nov. 2012, doi: 10.1109/MSP.2012.2211477.

[28] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images.(2009),” Cs.Toronto.Edu, pp. 1–58, 2009,

[Online]. Available: http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
[29] A. H. Victoria and G. Maragatham, “Automatic tuning of hyperparameters using Bayesian optimization,” Evolving Systems, vol.

12, no. 1, pp. 217–223, Mar. 2021, doi: 10.1007/s12530-020-09345-2.

[30] H. M. Rai, K. Chatterjee, and S. Dashkevich, “Automatic and accurate abnormality detection from brain MR images using a novel
hybrid UnetResNext-50 deep CNN model,” Biomedical Signal Processing and Control, vol. 66, p. 102477, Apr. 2021, doi:

10.1016/j.bspc.2021.102477.

[31] S. M. Jeong, S. G. Lee, C. L. Seok, E. C. Lee, and J. Y. Lee, “Lightweight Deep Learning Model for Real-Time Colorectal Polyp
Segmentation,” Electronics (Switzerland), vol. 12, no. 9, p. 1962, Apr. 2023, doi: 10.3390/electronics12091962.

BIOGRAPHIES OF AUTHORS

Abdul Rahman Mohamad Rom obtained his Bachelor’s degree in Computer

Science with First Class Honours in the year 2020 from the esteemed Universiti Teknologi

MARA (UiTM). His academic journey continues as he is currently a Fast Track Ph.D. student

at UiTM, now entering his third year of rigorous doctoral studies. In addition to his pursuit

of advanced knowledge, he serves as a Graduate Research Assistant, actively contributing to

the realm of academic research. His commitment to the field is evident through his diligent

work and dedication to expanding the boundaries of computer science. His research interests

encompass cutting-edge topics in computer science and technology, reflecting his

unwavering dedication to advancing knowledge in this dynamic domain. He is readily

accessible and welcomes professional inquiries at his email address. He can be contacted at

email: rahmanrom@gmail.com.

Nursuriati Jamil is a Professor in College of Computing, Informatics and

Mathematics, Universiti Teknologi MARA. She holds a Bachelor’s degree, and Masters in

Computer Science. Having completed her Ph.D. in Information Sciences, her researches

mainly focused in the area of AI, pattern recognition and image recognition, healthcare

applications, internet of things, and multimedia information retrieval. She can be contacted

at email: liza_jamil@uitm.edu.my.

Shafaf Ibrahim is an Associate Professor at the College of Computing,

Informatics, and Mathematics, Universiti Teknologi MARA Shah Alam, Malaysia. She holds

a Diploma, Bachelor’s degree, Masters, and Ph.D. in Computer Science. Her research

interests include AI, evolutionary algorithms, DL, ML, and image processing. She can be

contacted at email: shafaf2429@uitm.edu.my.

mailto:rahmanrom@gmail.com
https://orcid.org/0009-0001-2257-0448
https://scholar.google.com/citations?view_op=list_works&hl=en&user=iCKMuG8AAAAJ
https://orcid.org/0000-0003-4634-9833
https://scholar.google.com.my/citations?user=N6VKLEIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=6603538109
https://www.webofscience.com/wos/author/record/2054435
https://orcid.org/0000-0002-2969-3846
https://scholar.google.com.my/citations?user=n_TDvuoAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56234283900
https://www.webofscience.com/wos/author/record/2382257

