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 This research examines the efficacy of random search (RS) in hyperparameter 

tuning, comparing its performance to baseline methods namely manual search 

and grid search. Our analysis spans various deep learning (DL) architectures-

multilayer perceptron (MLP), convolutional neural network (CNN), and 

AlexNet implemented on prominent benchmark datasets of Modified National 

Institute of Standards and Technology (MNIST) and Canadian Institute for 

Advanced Research-10 (CIFAR-10). In the context of this study, the 

evaluation will be adopting a multi-objective framework, navigating the 

delicate trade-offs between conflicting performance metrics, including 

accuracy, F1-score, and model parameter size. The primary objective of 

employing a multi-objective evaluation framework is to enhance the 

understanding regarding the interactions of these performance metrics interact 

and influence each other. In real-world scenarios, DL models often need to 

strike a balance between these conflicting objectives. This research adds to 

the increasing wealth of knowledge in hyperparameter tuning for DL models 

and serves as a reference point for practitioners seeking to optimize their DL 

architectures. The results of our analysis are positioned to provide invaluable 

insights into the intricate balancing act required during the process of 

hyperparameter fine-tuning. These insights will contribute to the ongoing 

advancement of best practices in optimizing DL models and facilitating the 

ongoing optimization of the DL models. 
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1. INTRODUCTION 

The advancement in artificial intelligence (AI) and deep learning (DL) have exerted a profound impact 

on both scientific research and industry, and the application of DL to practical problems has been extensively 

researched across a multitude of domains, including but not limited to medical diagnosis [1], scene 

classification [2], autonomous vehicles [3], and among others. The rapid progress in DL has been facilitated 

by several factors including access to vast amount of data, advancement in computational hardware, and the 

development of the novel algorithm [4]. In DL implementations, the selection of appropriate hyperparameters 

is very crucial as they hold a significant responsibility over the performance of the DL model [5], [6]. The 

process of identifying the optimal set of hyperparameter is known as hyperparameter tuning [7]. Recognizing 

the best choice of a hyperparameter is often a cumbersome process to a level that some people consider it as a 

“black art” [8]. 

Currently, the predominant usage of hyperparameter tuning falls in the category of single objective 

optimization (SOO). Numerous studies were done in the context of hyperparameter tuning [9]–[11]. These 
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studies were done by using hyperparameter tuning by using SOO approach which undeniably benefits from 

the lower runtime, and a better convergence, but it restricts the performance evaluation to only a single 

objective limiting its practical applicability to meet the need of optimization in the real-world scenario. In such 

real-world contexts, the clashing between two conflicting objectives often arises, highlighting the need for 

more versatile optimization strategies. 

Thus, in this paper, the author proposes a multi-objective hyperparameter tuning in DL models, 

utilizing a random search to identify the optimal hyperparameter configuration. As such, the target of this 

research is to demonstrate the enhanced performance of DL architectures when utilizing random search, 

particularly as the hyperparameter search space expands, in comparison to other conventional methods. In 

addition to that, this investigation provides a thorough examination of performance metrics across various 

hyperparameter tuning techniques within the realm of multi-objective optimization. 

 

 

2. METHODS 

This section includes the mechanism used namely multi-objective hyperparameter tuning and 

hyperparameter tuning techniques which focuses on baseline methods and random search together with the 

workflow of the research. 

 

2.1.  Multi objective hyperparameter tuning 

Hyperparameters configuration λ is one of the key factors to the effectiveness of a learning algorithm 

𝒜, either to minimize, or maximize a specific function, f. Finding the right hyperparameter configuration can 

directly impact the performance of a DL model [6]. The act of identifying the optimal hyperparameters is 

referred to as hyperparameter tuning [7], which is one of the crucial processes in the development of the DL 

model. Mathematically, the effectiveness of a learning algorithm with assigned hyperparameters can be written 

as 𝒜𝜆, and 𝑓 =  𝒜𝜆 (𝑋
(𝑡𝑟𝑎𝑖𝑛)) for a training set 𝑋(𝑡𝑟𝑎𝑖𝑛). For example, with a convolutional neural network 

(CNN) model, where learning rate is l and epoch size as e, the 𝜆 = (𝑙, 𝑒). Now, the search space for 

hyperparameter configuration in the context of machine learning (ML) can be defined mathematically using 

the product symbol of ∏ as stated in the (1), where n represents the hyperparameters, each parameter has mi 

possible values. 

 

𝑁 = ∏ 𝑚𝑖
𝑛
𝑖=1  (1) 

 

With an increasing number of hyperparameters, the size of dimension space containing all of the 

hyperparameter configurations increases exponentially [12]. Due to the increasing in size of dimensionality, 

the implementation of hyperparameter tuning using handcrafted approaches is tedious, laborious, prone to 

errors, and consumes a lot of computing power [13]. In the context of real-world scenario, the process of 

objectives of optimization tends to be conflicting from one to another. Within this event, the implementation 

of multi objective optimization (MOO) are more relevant to be implemented to satisfy the requirement from 

both conflicting objectives. 

As instances within the discipline of DL, the objectives can vary depending on the classification or 

the efficiency performances, where it could be in the form of accuracy, F1-score, loss function, size of the 

model, latency, and to name a few. Based on previous studies, various examples of MOO are being 

implemented into the discipline of DL, such as accuracy vs computational complexity [14], accuracy vs 

specificity vs sensitivity [15], and accuracy vs latency [16]. Contrary to that, this study will be implementing 

MOO, and the performance will be evaluated between three conflicting objectives of accuracy, F1- score and 

weight of the model by using random search. Theoretically, multi-objective optimization can be expressed as 

either a minimization or maximization problem, as shown in (2) [17]: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐹(  𝑥 ⃗⃗⃗⃗  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  {𝑓1 ( 𝑥 ⃗⃗⃗   ) , 𝑓2 ( 𝑥 ⃗⃗⃗   ), … , 𝑓𝑜 ( 𝑥 ⃗⃗⃗   ) }  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝐹(  𝑥 ⃗⃗⃗⃗  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝑓1 ( 𝑥 ⃗⃗⃗   ) , 𝑓2 ( 𝑥 ⃗⃗⃗   ), … , 𝑓𝑜 ( 𝑥 ⃗⃗⃗   ) }  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔𝑖  ( 𝑥 ⃗⃗⃗   ) ≥  0, 𝑖 =  1, 2, … ,𝑚  

ℎ𝑖( 𝑥 ⃗⃗⃗   ) = 0, 𝑖 = 1, 2, … , 𝑝  

𝑙𝑏𝑖 ≤ 𝑥𝑖  ≤  𝑢𝑏𝑖 , 𝑖 =  1, 2, … , 𝑛 (2) 

 

Consider a vector, denoted as ( 𝑥 ⃗⃗⃗   ), which represents a collection of variables  
( 𝑥 ⃗⃗⃗  = 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥𝑛−1, 𝑥𝑛 ) relevant to the given problem, where n represents the quantity of variables, m 

denotes the count of inequality constraints, p signifies the number of equality constraints, lbi denotes the lower 

boundary of the i-th variable, and ubi denotes the upper boundary of the i-th variable. Based on the above 

formulation, there is a vector that store multiple variables which also referred to as parameters or decision 
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variables. This vector encapsulates all the relevant variables of the problem and is input into the objective 

function, which yield a numerical result. 

 

2.2.  Hyperparameter tuning techniques 

In the current practice, the implementation of hyperparameter tuning is done in the traditional way, 

which involves human directly to manually tuning the hyperparameter. Manual tuning entails modifying 

hyperparameters through intuition or trial and error [18]. However, as depicted, this method is both  

time-consuming and may not yield optimal results as it relies on the expertise of the practitioner [19]. There is 

another widely use method for hyperparameter which act as an alternative to manual tuning, which is called 

grid search [20]. 

Grid search has become the predominant baseline optimization strategy for hyperparameter tuning [21]. 

The theoretical concept of grid search is to try all possible solution which leads to finding the most accurate 

solution [22] yet it will be afflicted by the curse of dimensionality [23]. Consequently, the effectiveness of grid 

search in locating the optimal solution within the search space depends on the dimension size where the 

increasing number of hyperparameters will contribute to increase the dimension size exponentially. Figure 1 

illustrates the disparity of grid search and random search. 

 

 

 
 

Figure 1. Grid search vs random search [24] 

 

 

To address the limitation of the grid search, a promising approach is the random search technique. 

Contrary to grid search, random search sample hyperparameters value randomly within the searching space [24]. 

The different between grid search and random search are illustrated in Figure 1. The key advantage of random 

search lies on its simplicity and ease of implementation [24]. Unlike other optimization techniques, random 

search able to achieve improved outcomes through exploring a broader, albeit less appealing configuration 

space [25], can be automated and it does not require any gradient information or any other prior knowledge 

about the optimization landscape [26]. This makes it ideal for problems where the optimization landscape is 

complex and poorly understood. Within the scope of this study, hyperparameter tuning will be conducted using 

random search. 

 

2.3.  Workflow of the research 

In the context of Figure 2, there are a few distinct phases, each of which plays a crucial role in this 

research. These phases include the process of data preparation and configuration, the process of hyperparameter 

optimization and the systematic process of analysis and conclusion. Figure 2 shows the flowchart of this 

research from the general perspective. 
 

 

 
 

Figure 2. Schematic representation of the research methodology 
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2.3.1. Data collection 

The data that will be used in this experiment is the benchmark datasets that are typically implemented 

in DL experiments. One of the most popular lightweight benchmark datasets for image classification is 

Modified National Institute of Standards and Technology (MNIST) which consists a dataset of 60,000 

handwritten digit images for training and an additional 10,000 images for testing [27]. Each of the images in 

the MNIST dataset is the grayscale images with a resolution of 28×28 pixels. Notably, MNIST dataset 

represents ten classes which consists of digit 0 to 9. The other benchmark dataset that will be used in this 

experiment is Canadian Institute for Advanced Research-10 (CIFAR-10), which is also famously known for 

image classification. CIFAR-10 dataset comprises 60,000 red, green, and blue (RGB) images, each with a 

resolution of 32x32 pixels. These images are divided and represented into ten classes consisting of animals, 

and vehicles [28]. 

 

2.3.2. Data preparation and configuration 

As referred to Figure 3, the process of data preparation and configuration consists of four crucial 

phases, starting from splitting the data. The process of splitting the data is to partition the dataset into training 

and testing subsets, with the former being utilized for model training and the latter to evaluate the model’s 

performance. Subsequently, the data undergo normalization to ensure consistency in scale and distribution 

across features. 

 

 

 
 

Figure 3. Flowchart for the process of data preparation and configuration 

 

 

Following to the process of data normalization, the continued step involves the processing of 

reshaping the dataset to a new resolution of 64×64 pixels. This adjustment is necessary as it aligns with the 

subsequent design choice of reducing the kernel size in the network architecture, which precedes the application 

of max-pooling layer. By going through the process of reshaping the data, the model can effectively capture 

and extract meaningful features while ensuring compatibility with subsequent layers in the network. Finally, 

the search space is set up according to the hyperparameters outlined in Table 1. The dimension of each 

searching space is differ based on number of hyperparameters, and values of hyperparameters. 

 

2.3.3. Hyperparameters 

Hyperparameters are a set of parameters used for learning process during training and testing [29]. In 

this experiment, the choices of hyperparameters depend on the DL architecture due to the existence of extra 

convolutional or any other hidden layers. Based on the Table 1, the configuration of hyperparameters will be as: 

Table 1 shows the hyperparameters used in multilayer perceptron (MLP), CNN, and AlexNet 

architectures for this experiment. The recorded hyperparameters in the Table 1 can be categorized into two 

groups, which are (1) hyperparameters for network architecture, which directly impact the parameters number 

and the model size, and (2) hyperparameters for learning structures, which associated with the learning 

structure, and does not impact on the number of parameters and final model size. 

 



   ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 956-968 

960 

Table 1. The hyperparameters in different DL architecture (a) MLP, (b) CNN, and (c) AlexNet 
Hyperparameters Description Range/values 

LR Learning rate [1, 0.1, 0.01, 0.001, 0.0001] 
NE Number of epochs [10, 20, 30, 40, 50] 

BS Batch size [32, 64, 128, 256, 512] 

OP Optimizer [‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’] 
LR Learning rate [1, 0.1, 0.01, 0.001, 0.0001] 

NE Number of epochs [10, 20, 30, 40, 50] 

BS Batch size [32, 64, 128, 256, 512] 
OP Optimizer [‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’] 

LR Learning rate [1, 0.1, 0.01, 0.001, 0.0001] 

NE Number of epochs [10, 20, 30, 40, 50] 
BS Batch size [32, 64, 128, 256, 512] 

OP Optimizer [‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’] 

NF1 Number of filter (1) [16, 32, 64, 96] 
KS1 Kernel size (1) [3, 4, 5, 6] 

NF2 Number of filter (2) [48, 64, 96, 128] 

KS2 Kernel size (2) [3, 4, 5, 6] 
NF3 Number of filter (3) [64, 96, 128] 

KS3 Kernel size (3) [3, 4, 5] 

AC Activation [‘relu’,’elu’] 
LR Learning rate [1, 0.1, 0.01, 0.001, 0.0001] 

NE Number of epochs [10, 20, 30, 40, 50] 

BS Batch size [32, 64, 128, 256, 512] 
OP Optimizer [‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’] 

NF1 Number of filter (1) [16, 32, 64, 96] 

KS1 Kernel size 1 [3, 4, 5, 6] 
NF2 Number of filter (2) [48, 64, 96, 128] 

KS2 Kernel size (2) [3, 4, 5, 6] 

NF3 Number of filter (3) [64, 96, 128] 
KS3 Kernel size (3) [3, 4, 5] 

NF4 Number of filter (4) [64, 96, 128] 

KS4 Kernel size (4) [3, 4] 
NF5 Number of filter (5) [64, 96, 128] 

KS5 Kernel size (5) [3, 4] 

AC Activation [‘relu’,’elu’] 

 

 

2.3.4. Hyperparameter tuning via random search 

Hyperparameter tuning will be conducted using random search, and the performance will be evaluated 

and compared to the other baseline methods. The time constraints are applied to random search and other 

baseline methods and will serve as a stopping criterion after 24 hours. The procedural details of random search 

within this study are depicted in Figure 4. 

 

 

 
 

Figure 4. The random search process 
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As illustrated in Figure 4, the process in random search consists of three important elements, sample 

random hyperparameter, evaluate model, and check the stopping criteria to re-iterate the procedure. Once the 

stopping criteria is met, the result is recorded and will be analyzed to compare with the other baseline methods. 

In the end, the collective results for random search and other baseline methods contributing valuable insights 

to the research community. 

 

2.3.5. Performance evaluation 

The performance evaluation in this study will be assessed by using the trading off between accuracy, 

F1-score, and number of parameters. The evaluation of the classification metrics, specifically accuracy, can be 

formulated by utilizing the confusion matrix, which comprises four key components. The components involved 

are true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The formula to measure 

accuracy is constructed from the elements stored within the confusion matrix. Table 2 presents the confusion 

matrix and demonstrates the calculation for accuracy and F1-score. 

 

 

Table 2. The illustration of confusion matrix to calculate accuracy and F1-score 
 Positive Negative  

Positive TP FN  

Negative FP TN  
Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

recision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative predictive value (NPV) 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

Accuracy 
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃
 

 

 

In addition to accuracy, another classification metric that will be examined in this study is F1-score. 

F1-score can be defined as the measurement of the harmonic mean of precision and recall [30], offering a fair 

evaluation of the model’s performance. F1-score can be measured by using the recall, and precision as stated 

in Table 2. Precision is the proportion of instances predicted as positive, while recall represents the ratio of 

correctly identified positive instances to the total number of actual positive instances. In (3) shows the formula 

to measure the F1-score. 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
 (3) 

 

Another performance metric that will be evaluated in this study is weight of the model, which will be 

determined in the form of parameters number. Theoretically, the higher the parameters number indicates the 

bigger model size as using similar mechanism in [31]. To assess performance from a multi-objective 

perspective, it is best to aggregate the three opposing criteria of accuracy, F1-score and weight of the model.  

Due to the contradict direction of objectives, where the greater values are desired for the accuracy and 

F1-score, while a lesser number of parameters is preferred, the procedure of normalising and inverting the 

number of parameters is necessary. This is done to ensure that these indicators are in line with the same 

direction for each of the metrics, enabling a fair comparison and trade-off between two conflicting objectives. 

The formula for the weighted sum is (4): 

 

max_ 𝑝𝑎𝑟𝑎𝑚𝑠 = 𝑚𝑎𝑥(𝑃)  

 

min_ 𝑝𝑎𝑟𝑎𝑚𝑠 = 𝑚𝑖𝑛(𝑃)  

 

inversed_normalized_params = (max_params – Px) / (max_params – min_params)  

 

weighted_sum= (F1_score * w1) +( Accuracy * w2) + (inversed_normalized_params * w3) (4) 

 

In the context of the (4), 𝑃 refers to the parameters, while w refers to the performance metrics weight. As for this 

study, the priority for all of the performance metrics is equal, thus the value for w1, w2, and w3 are set to 1. 

 

 

3. RESULT AND ANALYSIS 

The performance evaluation of hyperparameter tuning is explored through random searches across 

different DL architectures, including MLP, CNN, and AlexNet on MNIST and CIFAR-10 datasets. The random 

search performance will be compared against two baseline methods namely (1) manual search, and (2) grid 

search. Based on the experiment, it is proven the process of manual search required expertise, experience, and 
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prone to biasness. With that being said, the alternative baseline methods which is grid search can be 

computationally expensive, particularly under the worst circumstances, in which the optimal hyperparameter 

configuration is positioned at the end of the sequential order.  

Within the scope of this experiment, as depicted in Table 3 the dimension size of searching space 

containing hyperparameter configurations drastically increased as the number of hyperparameters increased. If 

given the time constraint of 24 hours, the process of grid search only realistic to be executed completely on 

MLP architecture only. Table 3 records the exploration of the hyperparameter values and search space 

dimension. 

 

 

Table 3. The hyperparameter values and the search space dimension 

DL 
architecture 

Hyperparameters Value 
Num of 

combinations 

Avg time each 

combination (s) 
Est total time (hours) 

MNIST CIFAR-10 MNIST CIFAR-10 

MLP Epoch [10, 20, 30, 40, 50] 980 27.03 30.30 7.35 8.24 

Batch size [32, 64, 128, 256, 

512] 

Learning rate [1, 0.1, 0.01, 0.001, 
0.0001] 

Optimizer [‘SGD’, ‘RMSprop’, 

‘Adagrad’, 
‘Adadelta’, ‘Adam’, 

‘Adamax’, ‘Nadam’] 
CNN Epoch [10, 20, 30, 40, 50] 2,268,000 69.73 90.65 43929.9 57109.5 

Batch size [32, 64, 128, 256, 

512] 
Learning rate [1, 0.1, 0.01, 0.001, 

0.0001] 

Optimizer [‘SGD’, ‘RMSprop’, 
‘Adagrad’, 

‘Adadelta’, ‘Adam’, 

‘Adamax’, ‘Nadam’] 
Number of filter 

(1) 

[16, 32, 64, 96] 

Kernel size (1) [3, 4, 5] 
Number of filter 

(2) 

[48, 64, 96, 128] 

Kernel size (2) [3, 4, 5] 
Number of filter 

(3) 

[64, 96, 128] 

Kernel size (3) [3, 4, 5] 
Activation [‘relu’, ‘elu’] 

AlexNet Epoch [10, 20, 30, 40, 50] 145,152,000 207.81 230.21 8,378,899.2 9.282,067.2 

Batch size [32, 64, 128, 256, 
512] 

Learning rate [1, 0.1, 0.01, 0.001, 

0.0001] 
Optimizer [‘SGD’, ‘RMSprop’, 

‘Adagrad’, 

‘Adadelta’, ‘Adam’, 
‘Adamax’, ‘Nadam’] 

Number of filter 

(1) 

[16, 32, 64, 96] 

Kernel size (1) [3, 4, 5, 6] 

Number of filter 

(2) 

[48, 64, 96, 128] 

Kernel size (2) [3, 4, 5, 6] 

Number of filter 

(3) 

[64, 96, 128] 

Kernel size (3) [3, 4, 5] 

Number of filter 

(4) 

[64, 96, 128] 

Kernel size (4) [3, 4] 

Number of filter 

(5) 

[64, 96, 128] 

Kernel size (5) [3, 4] 

 

 

Within the scope of this experiment, where the time constraint is 24 hours, the process of grid search 

can only be done affectively on MLP architecture, which is equivalent to 7.35 hours and 8.24 hours to 
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completely sample all hyperparameter configuration in the hyperparameter search space. Whereas, by 

implementing grid search on other DL architectures, it takes more than 24 hours to completely executed. Due 

to that, the probability of random search to perform better is higher if the optimal solution located beyond the 

sequential order explored by grid search in CNN, and AlexNet architecture. The finding of optimal 

hyperparameter configuration from multi-objective point of view using Pareto method for MLP, CNN, and 

AlexNet on MNIST dataset by using random search are plotted in Figures 5(a)-(c). 

 

 

 
(a) 

 
(b) 

  

 
(c) 

 

Figure 5. The Pareto identification for different architectures on MNIST dataset: (a) MLP, (b) CNN, and (c) 

AlexNet 

 

 

Based on the graphical representation in Figure 5, the Pareto identification is marked red on each of 

the graphs according to Figure 5(a) MLP, Figure 5(b) CNN, and Figure 5(c) AlexNet. Within the context of 

the MNIST dataset, the Pareto identification for the MLP yields an accuracy of 0.9833, an F1-score of 0.9832, 

and normalized parameters equating to 1. In the realm of CNN, the Pareto identification manifests an accuracy 

of 0.9923, an F1-score of 0.9923, and normalized parameters holding a value of 1.0. Lastly, within the 

framework of the AlexNet architecture, the Pareto identification culminates in an accuracy of 0.9892, an F1-score 

of 0.9891, and normalized parameters measuring at 0.9287. Figures 6(a)-(c) shows the Pareto identification for 

MLP, CNN, and AlexNet on CIFAR-10 dataset. 
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(a) 

 
(b) 

  

 
(c) 

 

Figure 6. The Pareto identification for different architectures on CIFAR-10 dataset: (a) MLP, (b) CNN, and 

(c) AlexNet 
 

 

According to Figure 6, the Pareto identification is marked red on each of the corresponding graphs 

for MLP denoted as Figure 6(a), CNN denoted as Figure 6(b), and AlexNet denoted as Figure 6(c). Within the 

context of the MNIST dataset, the Pareto identification for the MLP yields an accuracy of 0.5260, an F1-score 

of 0.5223, and normalized parameters equating to 1. Conversely in CNN, the Pareto identification manifests 

an accuracy of 0.7082, an F1-score of 0.7087, and normalized parameters holding a value of 0.9341. Lastly, 

within the framework of the AlexNet architecture, the Pareto identification culminates in an accuracy of 0.6834, 

an F1-score of 0.6811, and normalized parameters measuring at 0.9437. Tables 4 to 6 shows the recorded top-10 

results for the process of hyperparameter tuning on MNIST dataset and various architectures (MLP, CNN, and 

AlexNet respectively). The columns involved in these tables are optimizer (OPT), learning rate (LR), batch size 

(BS), epochs (EP), activation (ACT), kernel 1 (K1), kernel 2 (K2), kernel 3 (K3), kernel 4 (K4), kernel 5 (K5), 

filter 1 (F1), filter 2 (F2), filter 3 (F3), filter 4 (F4), and filter 5 (F5). 
 
 

Table 4. The results for hyperparameter tuning using random search on MLP architecture and MNIST dataset 
OPT LR BS EP ACT Accuracy F1-score Normalized params Sum params accuracy F1-score 

Adagrad 0.100 32 30 elu 0.9833 0.9832 1 2.9665 

Adadelta 1.000 64 40 relu 0.9823 0.9822 1 2.9645 
Adagrad 0.100 32 40 elu 0.9822 0.9821 1 2.9643 

Adagrad 0.100 32 40 elu 0.9817 0.9815 1 2.9632 

Adagrad 0.100 32 20 relu 0.9814 0.9812 1 2.9626 
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Table 5. The results for hyperparameter tuning using random search on CNN architecture and MNIST dataset 

K1 K2 K3 F1 F2 F3 OPT LR BS EP ACT Accuracy 
F1-

score 

Normalized 

params 

Sum 
params 

accuracy 

F1-score 

3 3 3 16 48 64 Adagrad 0.1 32 10 relu 0.9923 0.9923 1.000 2.9847 
4 5 3 16 64 64 RMSprop 0.0001 64 30 elu 0.9898 0.9897 0.9681 2.9476 

4 3 4 32 48 64 RMSprop 0.0001 256 30 elu 0.9870 0.9869 0.9665 2.9404 

3 4 3 32 64 64 RMSprop 0.0010 512 50 elu 0.9918 0.9917 0.9470 2.9305 
4 3 3 96 48 64 Nadam 0.0001 128 20 elu 0.9896 0.9895 0.9454 2.9245 

 

 

Table 6. The results for hyperparameter tuning using random search on AlexNet architecture and MNIST 

dataset 

K1 K2 K3 K4 K5 F1 F2 F3 F4 F5 ACT OPT LR BS EP Accuracy 
F1-

score 

Normalized 

params 

Sum params 
accuracy F1-

score 

5 3 3 3 4 32 64 128 64 64 elu Adagrad 0.0100 128 30 0.9892 0.9891 0.9287 2.9069 
3 5 3 4 4 32 48 96 64 64 relu Adadelta 1.0000 512 10 0.9851 0.9849 0.9182 2.8882 

6 4 3 3 3 16 128 96 128 64 relu Adagrad 0.1000 512 20 0.9900 0.9899 0.8431 2.8231 

4 3 5 4 3 16 48 64 64 96 elu Adam 0.0010 64 10 0.9779 0.9779 0.8365 2.7923 
6 4 4 3 4 16 96 64 128 64 elu Adadelta 0.0100 32 10 0.9673 0.9672 0.8432 2.7776 

 

 

Based on Table 4 on MLP architecture, the best combination of hyperparameters is (OPT=Adagrad, 

LR=0.1, BS=32, EP=30, ACT=elu) which resulted to accuracy of 0.9833, F1-score of 0.9832 and inversed 

normalized params of 1.0. The sum of normalized params, accuracy and F1-score is 2.9665. Whereas, in CNN 

architecture, the best combination of hyperparameters is (K1=3, K2=3, K3=3, F1=16, F2=48, F3=64, 

OPT=Adagad, LR=0.1, BS=32, EP= 10, and ACT=relu) which resulted to accuracy of 0.9923, F1-score of 

0.9923 and normalized params of 1.0. The sum of total three metrics altogether is 2.9847. Meanwhile, the result 

for AlexNet architecture is accuracy of 0.9892, F1-score of 0.9891, and normalized params of 0.9287, where 

the sum of those metrics is 2.9069. The best combination that resulting to the result is (K1=5, K2=3, K3=3, 

K4=3, K5=4, F1=32, F2=64, F3=128, F4=64, F5=64, ACT=elu, OPT=Adagrad, LR=0.01, BS =128 and 

EP=30. Tables 7 to 9 shows the recorded top-10 results for the process of hyperparameter tuning on CIFAR-10 

dataset and various architectures (MLP, CNN, and AlexNet respectively). 

 

 

Table 7. The results for hyperparameter tuning using random search on MLP architecture and CIFAR-10 

dataset 
OPT LR BS EP ACT Accuracy F1-score Normalized params Sum params accuracy F1-score 

Nadam 0.0001 32 50 elu 0.5260 0.5223 1 2.0483 

Adagrad 0.0100 32 50 elu 0.5219 0.5190 1 2.0409 

Adagrad 0.0100 32 40 elu 0.5140 0.5126 1 2.0266 
Nadam 0.0001 128 50 relu 0.5162 0.5103 1 2.0265 

Adagrad 0.0100 128 40 elu 0.5158 0.5103 1 2.0261 

 

 

Table 8. The results for hyperparameter tuning using random search on CNN architecture and CIFAR-10 

dataset 

K1 K2 K3 F1 F2 F3 OPT LR BS EP ACT Accuracy 
F1-

score 
Normalized 

params 

Sum 

params 
accuracy 

F1-score 

3 3 5 32 48 64 Adamax 0.0010 64 40 relu 0.7082 0.7087 0.9341 2.3510 

5 3 3 96 64 64 Adagrad 0.0100 32 20 elu 0.6982 0.6964 0.9062 2.3008 
3 3 3 16 48 128 Adagrad 0.1000 32 40 relu 0.6735 0.6736 0.9535 2.3005 

4 3 3 16 64 64 Adamax 0.0100 512 10 relu 0.6481 0.6462 1.0000 2.2943 

3 4 4 16 64 64 Adagrad 0.0100 64 40 relu 0.6739 0.6754 0.9446 2.2939 

 

 

Based on Table 7 on MLP architecture, the best combination of hyperparameters is (OPT=Nadam, 

LR=0.0001, BS=32, EP=50, ACT=elu) which resulted to accuracy of 0.5260, F1-score of 0.5223 and inversed 

normalized params of 1.0. The sum of normalized params, accuracy and F1-score is 2.9665. Whereas, in CNN 

architecture, the best combination of hyperparameters is (K1=3, K2=3, K3=5, F1=32, F2=48, F3=64, 

OPT=Adamax, LR=0.001, BS=64, EP=40, and ACT=relu) which resulted to accuracy of 0.7082, F1-score of 

0.7087 and normalized params of 0.9341. The sum of total three metrics altogether is 2.3510. Meanwhile, the 
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result for AlexNet architecture is accuracy of 0.6834, F1-score of 0.6811, and normalized params of 0.9473, 

where the sum of those metrics is 2.3118. The best combination that resulting to the result is (K1=6, K2=4, 

K3=3, K4=3, K5=3, F1=32, F2=48, F3=96, F4=96, F5=64, ACT=relu, OPT=Adamax, LR=0.001, BS = 64, 

and EP=10. 

 

 

Table 9. The results for hyperparameter tuning using random search on AlexNet architecture and CIFAR-10 

dataset 

K1 K2 K3 K4 K5 F1 F2 F3 F4 F5 ACT OPT LR BS EP Accuracy 
F1-

score 

Normalized 

params 

Sum params 
accuracy F1-

score 

6 4 3 3 3 32 48 96 96 64 relu Adamax 0.0010 64 10 0.6834 0.6811 0.9473 2.3118 

6 3 3 3 4 64 96 64 96 64 elu SGD 0.0100 32 20 0.6827 0.6816 0.9055 2.2698 
4 4 3 3 3 16 64 64 64 64 elu Adam 0.0001 32 50 0.6127 0.6118 1.0000 2.2245 

5 5 4 3 3 64 96 64 96 64 relu Nadam 0.0001 64 20 0.6796 0.6777 0.8421 2.1994 

3 4 3 3 4 32 48 64 96 64 relu Adagrad 0.1000 256 20 0.6174 0.6144 0.9480 2.1798 

 

 

Based on the result as recorded in Tables 10 to 12, the results obtained from hyperparameter tuning 

across multiple DL architecture show the distinct patterns of performance for different optimization methods. 

As recorded, the result of random search appears to be standout performer consistently demonstrating superior 

results compared to manual search and grid search. However, on MLP architecture, grid search outperforms 

other methods of hyperparameter tuning due to the hyperparameter search space is small and manageable for 

grid search to completely execute the whole iteration within the time constraint given. 

 

 

Table 10. Results of hyperparameter tuning by using MLP 
MLP 

Hyperparameter tuning methods Dataset Accuracy F1-score Number of params 

Manual search MNIST 0.9813 0.9812 101,770 

CIFAR-10 0.5260 0.5223 394,634 

Grid search MNIST 0.9826 0.9829 101,770 

CIFAR-10 0.5084 0.5058 394,634 

Random search MNIST 0.9833 0. 9832 101,770 
CIFAR-10 0.5051 0.5005 394,634 

 

 

Table 11. Results of hyperparameter tuning by using CNN 
CNN 

Hyperparameter tuning methods Dataset Accuracy F1-score Number of params 
Manual search MNIST 0.977 0.9769 82,970 

CIFAR-10 0.6631 0.6604 133,450 

Grid search MNIST 0.9907 0.9906 92,698 
CIFAR-10 0.6579 0.6578 133,466 

Random search MNIST 0.9923 0.9923 40.602 

CIFAR-10 0.7082 0.7087 94,202 

 

 

Table 12. Results of hyperparameter tuning by using AlexNet 
AlexNet 

Hyperparameter tuning methods Dataset Accuracy F1-score Number of params 

Manual search MNIST 0.975 0.974 17,572,650 
CIFAR-10 0.6373 0.6385 17,448,154 

Grid search MNIST 0.9876 0.9875 17,131,674 

CIFAR-10 0.6919 0.6904 17,638,378 
Random search MNIST 0.9892 0.9891 17,321,098 

CIFAR-10 0.6834 0.6811 17,296,602 

 

 

4. CONCLUSION 

Our study thoroughly explored the effectiveness of multi-objective (MO) hyperparameter tuning 

methods, particularly focusing on random search in comparison to manual and grid search techniques, using 

MNIST and CIFAR-10 datasets. Our findings demonstrate that random search generally outperforms other 

baseline methods, although grid search proves advantageous in scenarios with limited hyperparameter search 

spaces and time constraints. Notwithstanding the positive outcomes of random search, it suffers from certain 
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limitations, including inconsistency in results due to its random sampling approach, potential redundancy, and 

inefficiency. Addressing these limitations, we advocate for the exploration of advanced optimization 

techniques, such as genetic algorithms (GA), which capitalize on prior information to enhance consistency and 

efficiency in hyperparameter tuning. GA offers numerous advantages, including the ability to handle 

interdependencies among hyperparameters, explore broader search spaces, and converge rapidly to multiple 

optimal solutions. Furthermore, GA's parallelizability enhances computational efficiency. Future research 

endeavors should focus on evaluating the efficacy of GA for MO hyperparameter tuning, juxtaposed with other 

baseline methods like random search, grid search, and manual search. Such comparative analyses promise 

deeper insights into optimizing hyperparameter tuning for multi-objective problems, potentially elevating the 

performance and generalizability of machine learning models across diverse datasets and applications. 
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